4.9 Antiderivatives
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1+1

flzxy=2-3=2'-3 = F(z)= f—i—l

Check: F'(z) = 3(2z) =3+0 =2 -3 = f(x)

~3m+C:%x2—3w+C

3 2
fl@)=1a>-22+6 = F(a:):%%—2%+6w+0=%x3—x2+6z+0
3$2+1 41’3+1
—L1,3,2_ 4,3 — 1 -z Iz -1 1.3 _
flz)=5+32 cr° = F(z) 2x+42+1 53+1+C 3T + 3T

Check: F'(z) =1+ 3(32%) — £ (42®) + 0= § + 22° — 22° = f(a)

f(x) =82° —32°+122° = F(z) =8(%a'") —3(32") +12(3a*)+C =1

f@)=(+1)2z-1)=22"+2-1 = F(z)=2(32°)+32°—2+C=1%

f@)=2@2-2)=z(d-4dz+2°) =dz— 42" +2° =

P2) =4 (32%) ~ 4 (3a%) + §a' + C = 26" - 4o+ o' O

 fm)=20+32"" = F(z)=2"+ 22" +C=2"+2z>"+C

. f(z) =6z — ¥z =622 —2V¢ =

4
szt +C

a'%— 22"+ 32"+ C

:c3+%x2—m+0

1/4+1 3/4+1 5/4 7/4
_ e 1/4 _m 3/4 _Z _ T ST — 4254 _ 4T/ L O
. f(z) =5z Tz = F(z) 5§+1 7%+1 +C 55/4 77/4+C x x4+

LI/2H1 1/641 32 g7/6
_ _z _gT T = —4g3/2 _ 847/6 L O
F(x) 6%+1 %+1+C 63/2 7/6+C x 2P+
774 _7/3

fz)=Vad + Yt = 2% +2Y° = F(z)= %—I + % +C = $m7/4 + %x”s +C

027 o= te ifa<o
1= — 8 1

fx) = alcg = 102~ has domain (—o0,0) U (0, 00), so F(z) = 758 4z

—@-{-Cz if £ >0

See Example [(b) for a similar problem.
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5 — 4z° + 2z° 6 3 .
g(z) = — % = 5z7°% — 427" + 2 has domain (—o0,0) U (0, 00), so
-5 -2
1 2 .
Sx—5;4x—2~+2x+01 =-=+—5+2r+C1 ifz<0
Glz) = ; , - 5z
—m—5+ﬁ+21‘+02 if >0
4 4 1/2
fu) = u_%@ - “_2 + 3“2 — 4302 o
u u u
u? w3/ 1 u”1/? 1 6
F = — —_— = = 3 3 C - = 3. —
(u) 3+3_3/2+1+C 3u+ _1/2+ U \/E+C

f(z) =3e" +7sec®>z = F(z)=3e"+ Ttanz + Cy on the interval (nm — Z,nw + 3).
g(0) =cos —5sinf = G(0) =sinf —5(—cosb) + C =sind + 5cosf + C
f(t) =sint+ 2sinht = F(t) = —cost+ 2cosht+ C

f(z) =5e" —3coshe = F(x)=5e" —3sinhz + C

3/2

f(z) =2Vx +6cosz =22"? +6cosz = F(w):2<§/2) 6sinz +C = 422 + 6sinz + C

z® — 2% + 2 12 »
flz) = 4 “;4’%—3:36— + 2z =
F 1 2 12 L,
(x)———n|x|+2< 3+1)+C—§x n{m|—ﬁ+

_ 242 _ 14(1+42%) 1 F(z) = tan~! c
@)= 1 1+ a2 Tl = Fle)=tan” zta+

:L's 3:6

f(m):5x4_2x5 = F(z)=5 __2‘F+C=l’5—%a?6+0

F(0)=4 = 0°-1.04C=4 = C=4,s0F(z)=2"—32°%+4

The graph confirms our answer since f(z) = 0 when F' has a local maximum, f is

positive when F' is increasing, and f is negative when F' is decreasing.

f(w):473(1+x2)-1:4 3

= F(z)=4x —3tan 'z +C.

i ) 1
F(1)=0 = 4-3(3)+C=0 = C=2% _4,50 I
F(z) = 4z — 3tan™' z + 2% — 4. Note that f is positive and F" is increasing on R. ¥5 . ’
Also, f has smaller values where the slopes of the tangent lines of F" are smaller. L )

.'173

2
ﬂm:mwmQﬁﬁm:&%+m3+caw+m+c:

3 4
flxz)=3" % +4- % +Czx+D=2+2"+Cx+D [C and D are just arbitrary constants]

flz)=2+2*+2° = fllx)=22+3i2*+12"+C = fla)=2a"+%2°+L2®+Cz+D
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28/3

8/3

F@=10 s fo=3(Er)ro=gr e =

2
/" (z) = 6z +sinz = f’(:z:):6<g%>—cosac—i—C=?>:102—cosas+CY =

3
f(x):?’(%) —sinz +Cx+D=2°—sine+Cz+D

f")y=¢ = f't)=e+C = [f(t)=e+Ct+D = f(t)=e+3C°+Dt+E
f'f)=t—vt = f't)=%12-2*?+C = f)=: -4 +Ct+D =

4 8 47/2 2
fit)=5t' — 72+ 1CP + Dt+ E

fllzx)=1-6z = f(z)=2-32>+C.f(0)=Candf(0)=8 = C=8,s0f(z)=2x—32"+8.

flz)=8+12c+3 = f(z)=22*+62>+32+C. f(1)=11+Cand f(1)=6 =
11+C=6 = C=-550f(z)=2z*+6x>+3z 5.

f(x) = Vo(6 + 5x) = 6212 +52%/2 = f(x) = 42*% + 22°/% + C.
f)=6+Cand f(1) =10 = C =4,s0 f(z) =42%? +22°/% + 4.

fl(x) =22 —3/z* =22 - 327" = f(x) =2+ 272+ C because we’re given that z > 0.

f()=2+Cand f(1)=3 = C=1s0f(z)=2"+1/a°+ 1L

f'(t) =2cost +sec’t = f(t)=2sint+ tant + C because —7/2 < t < 7/2.

F(E)=2(v3/2) +V3+C=2V3+Cand f(£) =4 = C=4-2+3,50 f(t) =2sint + tant + 4 —2+/3.

22 -1 z? —Inz + C1 if >0

T

1
1 . 2

=z — — has domain (—o00,0) U (0,0) = T) =
x ( ) ) 1@ {%wz—ln(—m)-l—cz if z <0

f=4-ml+C=i+Candf1)=1 = C=0.
f(—l):%_1n1+02=%+czandf(_1):0 = CQ:_%'

192 —Inz if x>0
Thus9f(x)_{%x2_1n(x)~% if x <0
f'(x) = 2~*/3 has domain (—oc0,0) U (0,00) = f(x):{%x2/3+01 if >0

%m2/3+02 if <0

f)=2+Ciand f1)=1 = Ci=-1 f(-1)=2+Coand f(-1)=-1 = Co=-3.
3:):2/34% if >0

Thus, f(z) = {2

32238 ifz<0

flz)=4/V1—=2® = f(z)=4sin™'z+C. f(3)=4sin"'(3)+C=4-34+Cand f(3)=1 =

Z+C=1 = C=1-% 5 f(z) =4sin""z+1- 2.

)+C’$+D=2—30w8/3+0x+D
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37. f(x) =242 + 20 +10 = f(z) =82 +2*+10z+C. f (1) =8+ 1+10+Cand f'(1) = -3 =
19+C=-3 = C=-22,5 f'(z) =8z +2° + 10z — 22 and hence, f(z) = 2z* + +2° + 52% — 222 + D.

fA)=2+1+5-22+Dand f(1)=5 = D=22-1=23 50 f(z)=2z"+ £2° + 52° — 22z + 2.

38, f(x) =4— 6z —402° = f'(z) =4z —3z* 102" +C. f(0)=Cand f'(0)=1 = C=1,s0
f'(x) = 4z — 32® — 10z* + 1 and hence, f(z) = 22> — 2° —22° + 2+ D. f(0) = Dand f(0) =2 = D =2,50
flz) =22 —2® — 225 + 2 + 2.

39. f/(0) =sinf@+cosf = f'(0)=—cosf+sin0+C. f(0)=—-1+Cand f(0)=4 = C =550
J'(6) = —cosf + sin6 + 5 and hence, f(f) = ~sinh —cos@ + 50 + D. f(0) = —1+ Dand f(0) =3 = D=4,
so f(f) = —sinf — cosf + 50 + 4.

4. f'(t)=3/Vi=3t""2 = [f(t)=6t24+C. f'(4)=12+Cand f'(4) =7 = C=-5s0f(t) =6t/ -5
and hence, f(t) = 4t>/2 — 5t 4+ D. f(4) =32 —-20+ Dand f(4) =20 = D =8,s0 f(t) = 4t>/% — 5t + 8.

M. f(x)=2-120 = fl(z)=20—-6"+C = f[(z)=2"—22"+Cau+D.
fO)=Dand f(0)=9 = D=9 f(2)=4-164+2C+9=2C-3and f(2) =15 = 20=18 =
C =950 f(z) =2% —22° + 9z + 9.

42, f"(x) =202® + 122 +4 = f(x) =5z +4a2® +4x+C = fla)=2°+a* + 22 + Cx + D.
fO)=Dand f(0)=8 = D=8 f(1)=1+14+2+C+8=C+12and f(1)=5 = C=-7,%0
flx) =2 +2* + 227 — Tz + 8.

43. f"(x) =2+cosz = f(z)=2x+sinz+C = f(z)=2%-cosz+Cz+D.
f0)=-1+Dand f(0)=—1 = D=0 f(3)=7"/4+(3)Cand f(3)=0 = (5)C=-7°/4 =

C = _%7 SO f(l‘) = CC? —cosT — (%)x

44. [ (t) = 2e' +3sint = f/(t)=2e"—3cost+C = f(t)=2e"-3sint+Ct+D. f(0) =2+ Dand

f0)=0 = D=-2 f(r)=2"+7C—2and f(r) =0 = 7C=2-2" = G:Q_:e,

2—2e"

so f(t) = 2 — 3sint + t—2.

4. f"(z)=232>0 = f(z)=-1/z+C = f(x)=-Injz|+Czx+D=—Inz+ Cx+ D [sincez > 0].
f1) =0 = C+D=0and f(2)=0 = —In24+204+D=0 = —In24+2C—-C =0 [sinceD =-C] =
—In24+C=0 = C=In2andD=—-1In2.So0 f(z) =—Inz+ (In2)z —In2.

. ") =cose = [(e) =sinz+C. ['(0) = Cand f'(0) =3 = C=3 ['(z)=smz+3 =
f(z)=—coszx+3x+D. ff(0)=—1+Dand f(0)=2 = D=3. fl(z)=—cosz+3x+3 =
f(x)=—sinz+32° + 3z + E. f(0)=FEand f(0)=1 = E =1 Thus, f(z)=—sinz+ 22° +3z+ L.

47. Given f'(z) = 2z + 1, we have f(z) = 2® + = + C. Since f passes through (1,6), f(1) =6 = 1?4+1+C=6 =
C = 4. Therefore, f(z) = z® + z + 4 and f(2) = 2% +2 + 4 = 10.
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SN

fllz)=2" = flz)=312"+C. 24+y=0 = y=-z = m=-1LNowm=f'(z) = —-l=zx
= -1 =y =1 (from the equation of the tangent line), so (—1, 1) is a point on the graph of f. From f,
1=3(-1)"+C = C = 2. Therefore, the function is f(z) = z* + 3.

b is the antiderivative of f. For small z, f is negative, so the graph of its antiderivative must be decreasing. But both ¢ and ¢
are increasing for small x, so only b can be f’s antiderivative. Also, f is positive where b is increasing, which supports our
conclusion.

We know right away that ¢ cannot be f’s antiderivative, since the slope of ¢ is not zero at the z-value where f = 0. Now f is

positive when a is increasing and negative when « is decreasing, so a is the antiderivative of f.

Y The graph of F' must start at (0, 1). Where the given graph, y = f(z), has a
. / \ ) local minimum or maximum, the graph of F" will have an inflection point.
0 1 : ' x . ‘ . . . .
} \ Where f is negative (positive), F' is decreasing (increasing).
Where f changes from negative to positive, /' will have a minimum.
y Where f changes from positive to negative, F* will have a maximum.
14 i | _ L ) .
\ ; Where f is decreasing (increasing), F' is concave downward (upward).
: max.
5 -
P /‘\nN X
y=FaN_ /TP
min.
Y I " Where v is positive (negative), s is increasing (decreasing).
y=u(t
\ Where v is increasing (decreasing), s is concave upward (downward).
0 P t . . . -
Where v is horizontal (a steady velocity), s is linear.
y ‘

0 t
y
2 ifo<z<1 2c+C if0<z<1
flz)y=41 ifl<z<2 = fl@)=qz+D ifl<z<?2
-1 if2<x<3 —r+FE if2<x<3

f(0)=-1 = 20)+C=-1 = C = —1. Starting at the point

(0, —1) and moving to the right on a line with slope 2 gets us to the point (1, 1).
The slope for 1 < @ < 21is 1, so we get to the point (2, 2). Here we have used the fact that f is continuous. We can include the

point = 1 on either the first or the second part of f. The line connecting (1, 1) to (2,2) is y = x, so D = 0. The slope for
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2<xz<3is—1,sowegetto(3,1). f(3)=1 = -34+E=1 = FE =4.Thus
2c—1 if0<z<1
flz)=q=x ifl<az<2

—r+4 if2<x<3

Note that f’(z) does not existatz = L orat x = 2.

54. (a) 3 N (b) Since F'(0) = 1, we can start our graph at (0,1). f has a minimum at about

x = 0.5, so its derivative is zero there. [ is decreasing on (0, 0.5), so its

derivative is negative and hence, F' is CD on (0, 0.5) and has an IP at « ~ 0.5.

On (0.5,2.2), f is negative and increasing (f’ is positive), so F' is decreasing

4

and CU. On (2.2, 00), f is positive and increasing, so F' is increasing and CU.

© f(z) =2z -3Vz = CY
F(z)=2>-3-22%7 4+ C.

F0)=Cand F(0)=1 =

C' =1,s0

F(z) =2® —22%% + 1.

0.5

. sin x
. ) = —, — <zx<
55. f(x) T 2r <z <27
f
Note that the graph of f is one of an odd function, so the graph of F will 3

2
be one of an even function. {

—

2
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fl@)=vrt—222+2-1, -1.5<z <15 !
Note that the graph of f is one of an even function, so the graph of F' will f

be one of an odd function.

—1‘.5 0 1.5 x

v(t) = §'(t) =sint —cost = s(t) = —cost —sint+C. s(0) = -1+Cands(0)=0 = C=1,50
s(t) = —cost —sint + 1.

o(t) =s'(t) =15Vt = s(t)=t24+C. s(4) =8+ Cands(4) =10 = C=2,50s(t) =12 +2.

at)=v'({t)=t—2 = o(t)=2%-2t+C. v(0)=Candv(0)=3 = C=3,50v(t) =42t>—2t+3and

s(t)=2t>—¢*+3t+D. s(0)=Dands(0) =1 = D=1ands(t)= %t —t>+3t+1

a(t) ='(t) =cost +sint = wv(t) =sint—cost+C = 5=v0)=-1+C = C=6,50
v(t) =sint —cost+6 = s(t)=—cost—sint+6t+D = 0=s0)=-1+D = D=1,5s0
s(t) = —cost —sint + 6t + 1.

a(t) =v'(t) = 10sint +3cost = ov(t) = —10cost+ 3sint +C = s(t) = —10sint —3cost + Ct+ D.
s(0) =-3+D=0ands(2r) = -3+ 2rC+D =12 = D =3andC = £. Thus,

s(t) = —10sint — 3cost + 2t + 3.

alt) =t —4t+6 = v(t)=3*-20+6t+C = s(t)=5t"— 2> +3t°+ Ct+ D. s(0) = Dand
1

1
50)=0 = D=0.s5(1)=2+Cands(1) =20 = C =32 Thus,s(t)=5t* — 2¢>+3t° + 2L¢.
(a) We first observe that since the stone is dropped 450 m above the ground, v(0) = 0 and s(0) = 450.
V(L) =a(t) =98 = ov(t)=-98+C.Nowv(0)=0 = C=0,s00(t)=—-9.8 =
s(t) = —4.9t + D. Last, s(0) =450 = D =450 = s(t) =450 — 4.9¢2,
(b) The stone reaches the ground when s(t) = 0. 450 —4.9t> =0 = > =450/4.9 = {1 = /450/4.9 ~ 9.58s.
(c) The velocity with which the stone strikes the ground is v(t1) = —9.8,/450/4.9 ~ —93.9 m/s.
(d) This is just reworking parts (a) and (b) with v(0) = —5. Using v(t) = —9.8t + C,v(0) = -5 = 0+C=-5 =
v(t) = —9.8t — 5. So s(t) = —4.9t2 — 5t + Dand s(0) =450 = D =450 = s(t) = —4.9t> — 5t + 450.
Solving s(t) = 0 by using the quadratic formula gives us t = (5 + /8845 )/(—9.8) = t1~9.09s.
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64. vV'(t) =alt)=a = v({t)=at+Candvy=v(0)=C = o(t)=at+vo =

s(t)=2at? +wt+D = so=s0)=D = s(t)=3at’>+vot+ so

65. By Exercise 64 with a = —9.8, s(t) = —4.9t> + vot + so and v(t) = s’ (t) = —9.8t + vo. So
[0(t)]* = (—9.8t +v9)” = (9.8)* % ~ 19.6v0t + v = v§ + 96.04t> — 19.6v0t = v — 19.6(—4.9t> + vot).

But —4.9t2 + wot is just s(t) without the so term; that is, s(t) — so. Thus, [v(t)]* = vZ — 19.6 [s(t) — so].

66. For the first ball, s1(t) = — 16t + 48t + 432 from Example 7. For the second ball, a(t) = =32 = w(t) = —32t+ C, but
v(l)=-32(1) +C =24 = C =56,s00v(t) =—32t+56 = s(t)=—16t>+ 56t + D, but
s(1) = —16(1)® +56(1) + D =432 = D =392, and s2(t) = —16t> + 56¢ + 392. The balls pass each other
when s1(t) = sa(t) = —16t% +48t 4432 = —16t> +56t +392 < 8 =40 < t=25s,
Another solution: From Exercise 64, we have s1(t) = —16t? + 48t + 432 and s2(t) = —16t> + 24¢ + 432.
We now want to solve s1(t) = s2(t —1) = —16t> +48t + 432 = —16(t — 1)® + 24(t — 1) + 432 =
48t =32t —16+24t —24 = 40=8 = (=>5s.
67. Using Exercise 64 with a = —32, vg = 0, and sg = h (the height of the cliff)), we know that the height at time ¢ is
s(t) = —16t> + h. v(t) = §'(t) = =32tand v(t) = =120 = —32t=—120 = t=3.75,50
0=s(3.75) = —16(3.75)> + h = h = 16(3.75)% = 225 ft.
68. (a) Ely" = mg(L —z) + 2pg(L —x)®> = EIy =—3img(L—2)*— pg(L —z)* +C =
Ely = tmg(L — x)® + 3;p9(L — z)* + Cz + D. Since the left end of the board is fixed, we must have y = 3’ = 0
when = 0. Thus, 0 = —%mgL2 — éngs +Cand0 = %mgL3 + —21—4ng4 + D. It follows that
Ely = tmg(L — 2)® + 31p9(L — z)* + (3mgL? + tpgL®)z — (2mgL® + 55 pgL*) and
fl@)=y= % [§mg(L — 2)° + 5309(L — 2)* + (3mgL® + §pgL®)x — (mgL® + 5709L")]
(b) f(L) < 0, so the end of the board is a distance approximately — f (L) below the horizontal. From our result in (a), we

calculate

, -1 3 4 3 4 -1 4 gL® (m  pL
—f(L) = Yo [3mgL® + tpgL* — tmgL® — 32pgL?] = Vi (3mgL® + 3pgL?*) = S \3 %

Note: This is positive because g is negative.

9. Marginal cost = 1.92 — 0.002z = C'(z) = C(z)= 1.92z —0.0012 + K. But C(1) = 1.92 — 0.001 + K = 562 =
K = 560.081. Therefore, C(z) = 1.92z — 0.0012% + 560.081 = (C/(100) = 742.081, so the cost of producing
100 items is $742.08.

70. Let the mass, measured from one end, be m(z). Then m(0) = 0 and p = Z—ZL =z Y2 = m(z) =222 + Cand

m(0) = C = 0, so m(z) = 2 Vz. Thus, the mass of the 100-centimeter rod is m(100) = 2 /100 = 20 g.
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Taking the upward direction to be positive we have that for 0 < ¢ < 10 (using the subscript 1 to refer to 0 < ¢ < 10),
ai(t) = —(9—0.9t) = vi(t) = wvi(t) = 9t + 0.45t> + vo, but v1(0) = vo = —10 =

vi(t) = —9t+0.45t> — 10 = s1(t) = s1(t) = —2t* + 0.15t> — 10t + so. But 51(0) = 500 = so =

s1(t)

more than 10 seconds for the raindrop to fall. Now for ¢ > 10, a(t) =0 ='(t) =

—5% +0.15¢t° — 10t + 500. s1(10) = —450 + 150 — 100 + 500 = 100, so it takes

Il

v(t) = constant = v1(10) = —9(10) + 0.45(10)2 — 10 = =55 = w(t) = —55.

At 55 m/s, it will take 100/55 ~ 1.8 s to fall the last 100 m. Hence, the total time is 10 + 122 = 230 ~ 11.8s.

v'(t) = a(t) = —22. The initial velocity is 50 mi/h = 245280 — 220 fi /5 50 9(t) = —22¢ + 220,
The car stops when v(t) = 0 < t = 2% = 12 Since s(t) = ~11¢% + 229¢, the distance covered is

S(_].3_0) _ 711(%9)24_ 2_3)0 . 1?0 = % = 1229 ft.

a(t) = k, the initial velocity is 30 mi/h = 30 - 2233 = 44 ft/s, and the final velocity (after 5 seconds) is

50 mi/h = 50 - 2220 = 220 fy/s Sov(t) = kt + Cand v(0) =44 = C =44. Thus,v(t) =kt +44 =

v(5) =Bk + 44. Butv(5) = 20,505k +44 = 20 = k=% = k=3 ~587ft/s

a(t)=—-16 = wv(t) = —16t + vo where vg is the car’s speed (in ft/s) when the brakes were applied. The car stops when
—16t+vo =0 <« t=vo. Now s(t) = 3(—16)t> + vot = —8t* + vot. The car travels 200 ft in the time that it takes
to stop, 50 §(5v0) =200 = 200 = —8(wvo)” + vo(Fve) = Hvi = & =32-200 = 6400 =

vo = 80 ft/s [54.54 mi/h].

Let the acceleration be a(t) = k km/h%. We have v(0) = 100 km/h and we can take the initial position 5(0) to be 0.

We want the time ¢, for which v(t) = 0 to satisfy s(¢) < 0.08 km. In general, v'(t) = a(t) = k, sov(t) = kt + C, where
C = v(0) = 100. Now s'(t) = v(t) = kt + 100, so s(t) = 1kt® + 100t + D, where D = s(0) = 0.

Thus, s(t) = $kt* + 100¢. Since v(ts) = 0, we have kt; + 100 = O or ty = —100/k, so

1 100\ ? 100 1 1 5,000 .. o
s(ty) = Ek <~T) -+ 100 (_T) = 10,000 <ﬂ - E) = The condition s(¢ ;) must satisfy is
—&koo <008 = —50’—0008—0 >k [kisnegative] = k < —62,500 km/h?, or equivalently,

k< 32 ~ —482m/s”.

(@) For0 <t < 3wehavea(t) =60t = v(t) =30t°+C = v(0)=0=C = o(t) =30t so0
s() =103 +C = s(0)=0=C = s(t) = 10t>. Note that v(3) = 270 and 5(3) = 270.
For3 <t <17 a(t)=—g= —-32ft/s = o(t)=-32t-3)+C = v3)=210=C =
v(t) = —32(t —3) +270 = s(t) = —16(t —3)> +270(t —=3) + C = s(3)=270=C =
s(t) = —16(t — 3)% + 270(¢ — 3) + 270. Note that v(17) = —178 and s(17) = 914.

For 17 < ¢ < 22: The velocity increases linearly from —178 ft/s to —18 ft/s during this period, so
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Av _ —18—(-178) 160 _ B
T = =82 Thusw(t) =320 - 17) 178 =

s(t) = 16(t — 17)% — 178(t — 17) + 914 and 5(22) = 424 ft.
Fort > 22:v(t) = —18 = s(t) = —18(t —22) + C. Buts(22) =424 = C = s(t) = —18(t — 22) + 424.

Therefore, until the rocket lands, we have

30t° if0<t<3
" —32(t—3)+270 if3<t<17
’U =
32(t—17) — 178 if 17 <t <22
—18 if t> 22
and
10t3 if0<t<3
0 —16(t — 3)>+270(t — 3) +270 if 3<t <17
S =
16(t — 17)> =178 (t — 17) +914  if 17 <t <22
—18(t — 22) + 424 if ¢t > 22
v s
300 1500
200 1200
100 9001
22
+ 600
0| 3 Vr
—100 300
-0 of 3 7 2 !

(b) To find the maximum height, set v(t) on 3 < ¢t < 17equal to 0. —32(t —3)+270=0 =

t1 = 11.4375 s and the

maximum height is s(t1) = —16(t; — 3)? + 270(t1 — 3) + 270 = 1409.0625 ft.

(c) To find the time to land, set s(t)

77. (a) First note that 90 mi/h = 90 x 3283

ft/s = 132 ft/s. Then a(t) = 4 ft/s”

—18(t —22) + 424 = 0. Then t — 22 = % =235,50t~45.65s.

= v(t)=4+4+C,butv(0)=0 =

C = 0. Now 4t = 132 when t = 132 = 335, s0 it takes 33 s to reach 132 ft/s. Therefore, taking s(0) = 0, we have

s(t) = 2t%,0 < t < 33. So 5(33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for 33 < ¢ < 933 we have

u(t) =132 ft/s =

5(933) = 132(900) + 2178 = 120,978 ft = 22.9125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s and travels

2178 ft at the end of its trip. During the remaining 900 — 66 = 834 s it travels at 132 ft/s, so the distance traveled is
132 - 834 = 110,088 ft. Thus, the total distance is 2178 + 110,088 + 2178 = 114,444 ft = 21.675 mi.

(c) 45 mi = 45(5280) = 237,600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we have

233,244 ft at 132 ft/s for a trip of 233,244/132 = 1767 s at 90 mi/h. The total time is
1767 + 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 2250's. 2250 — 2(33) = 2184 s at maximum speed. 2184(132) + 2(2178) = 292,644 total feet or

292,644/5280 = 55.425 mi.



