5.3 The Fundamental Theorem of Calculus

1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of
Calculus. See the statement of this theorem and the paragraph that follows it on page 387.

2. (a) g(x) = [ f(t)dt,s0g(0 fo t)dt = 0.
1)~f0 f@)dt=%-1-1 [arcaoftriangle] = 3.
= [Zf(t)dt = [y f(t)dt + [ f(t)dt [below the x-axis]
:§~§ 1-1=0.
93) =g@)+ [ f®)dt=0-1.1.1=-1.
g(4) = g(3) + [ f(ydt =-L+L-1.1=0.
9(5) = g(4) + [, f(t)dt =0+ 1.5=15.
9(6) = g(5) + f2 f(t)dt =1.5+2.5 = 4.
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(b) g(7 )+ f ¢ f(t)dt ~ 4+ 2.2 [estimate from the graph] = 6.2. (d) g
(c) The answers from part (a) and part (b) indicate that g has a minimum at
2 = 3 and a maximum at x = 7. This makes sense from the graph of f
1
since we are subtracting area on 1 < x < 3 and adding areaon 3 < z < 7. >
3. (a) g(z) =[5 f(t)dt @ 7
0
9(0) = [y f(t)dt
g(1) = fl f)dt=1-2=2  [rectangle],
9(2) = [Zf(t)dt = [} f@t)dt + [P f(t)dt = g(1) + [7 f(t)dt “
=24+1-2+ 5 -1-2=5 [rectangle plus triangle],
=P f)dt=g2)+ [J ft)dt=5+1-1-4=7,
g(6) =g(3) + f3 f(t)dt [the integral is negative since f lies under the z-axis]
=7+[-(3-2-2+1-2)]=7—-4=3
(b) g is increasing on (0, 3) because as x increases from 0 to 3, we keep adding more area.
(¢) g has a maximum value when we start subtracting area; that is, at x = 3.
4. (a) g(— f ft)dt=0,g(3) = f f)ydt = f83 f()dt+ f03 f(t) dt = 0 by symmetry, since the area above the
x-axis is the same as the area below the axis.
(b) From the graph it appears that to the nearest §, g(—2) = f;; fOdt~1,9(-1)= [

and g(0 f f(t)dt ~ 53,

(c) g is increasing on (—3, 0) because as z increases from —3 to 0, we (e)

keep adding more area.

(d) g has a maximum value when we start subtracting area; that is, at

o f)dt~

z =0.
(f) The graph of ¢’ () is the same as that of f(x), as indicated by FTCI.

5, (a) By FTC1 with f(t) =t’anda = 1, g(z) = [[t*dt =
g'(z) = f(z) =2
(b) Using FTC2, g(z) = [ t* dt = [3t°]] = 32° — 3
6. (a) By FTC1 with f(t) =1++/Aanda = 0, g(=
g'(z) = f(z) =1+ V.
(b) Using FTC2, g(x) = [ (1 + /) dt = [t+ §t3/2}0 —z+ 257 =
g (@) =1+2"2 =1+

=Jo A+ vE)dt =

463
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| 1 o
7. f(t) = t3 1 and g(z) = /1 PR dt soby FTC1, ¢'(z) = f(z) = o Note that the lower limit, 1, could be any

real number greater than —1 and not affect this answer.
8. (1) =c” ~'and g(z) = N e’ =t dt, so by FTCL, ¢'(z) = f(z) = e ™.
9. f(t) =t*sintand g(y) = [} t*sintdt, so by FTICI, ¢'(y) = f(y) = y*siny.

10. f(z) = Va2 +4and g(r) = [ Va2 +4dx,s0 by FTCL, ¢'(r) = f(r) = V2 + 4.
1. F(:c):/ \/1+sectdt:~/ V1+sectdt = F’(z):—%/ V1+sectdt = —/1+secx

1 x
12. G(x) :/ cosx/fdt:—/ cosvVidt = Gz :———/ cos V't dt = —cos\xz
T 1
1 du 1 dh dh du
13. Letu = s Then Pt Also, T dude

1/ u
W (z) = —d—/ arctant dt = 4 / arctantdt - du _ arctanud—u = —M.
9 du [, dz dx

dx 22
du dh  dhdu
_ 2 au-
14. Let w = x*. Then e . Also e T dude’ )
h'(x):di/ \/1+T3dr——/ Vi+r3dr- = V1 +ud(2z) = 22 /1 + (22)% = 22 /1 + 5.
T
du dy _ dydu
15. Let v = tan z. Then T = sec? z. Also, dr — dudz’
tan o
:—/ \/t+\/—dt —/ \/t+\/_dt = \Ju++u \/tanm+\/tanmse02:c.
B du dy  dy du
16. Let u = cos z. Then T sin z. Also, prrl e SO
y/:ZidE,l (14w )wdv—j‘% (1+v2)10dv~j—2:(1+u2)10%:—(1+coszx)msinm.
_ dw dy _ dy dw
17. Letw = 1 — 3z. Then Fee 3. Also, T dw dn’ , SO
1 3 1 3 w 3 3 a1 _ 3
y':i/ _Lu:_d_/ W g, w4 O w_(ig):M
dz [y _gp 1 +u? dw J,, 1+u? dx dw J; 1+u? dx 1+ w? 14 (1 —3x)?
. e o B _
18. Let u = €”. Then T = e”. Also, Je — du dx,so
0 U
y':d%czmsinstdt:%/ sin® t dt - S—ZZA%/O sinstdt-%:—sin‘o’u-ez:—ewsing(ez).

w [t maan (o] - (F-2) - (SR -e) - a-0- -0 -0- (-

J—1

2. [°,6ds = [62]", =65 — (—2)] = 6(7) = 42
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S5 -2t 43 dt = [5t— 12 +1%]] = (20— 16 +64) — (5 1+ 1) = 68 — 5 = 63
o (U dut = 2e®) du = [ut fou — ']y = (1455 - 55) —0= 22

1
1, 4/5 — | 5..9/5 _ 5 — 5
-foff/dl’—[gm/}o—a—o—a

P e = [Pt de = [3077] = 2890 1% = 220 < 1) = 316 - 1) = 315) = %
23 - t31° 3 [17? 1 7

e [ el S [E], -2 G)

.ff”cos@dﬁ: [Sinﬁ]iﬂ:sin27r—sin71':0—0=0

. fOQx(2+x5)d:v:f02(2x—|—:z6)dx: [x2+%x7]§: (4+ 1) - (0+0) =18

@ raVE)de= [[3 e de = [+ 3270 < [(34+3) 0] = ¥

./lgw\;gldx:/lg <7_T>dm_/<x1/2 2= 1?) dg 2[2 3/2 _ o 1/2]?

=G-29)- (-2 =12-(-) = 4

Jiy =Dy + Ddy = [F2y* —y—Ddy = [2y° - 3P -] = (2 -2-2)-0=1%
. fOWMsecQtdt = [tant]g/4 =tanf —tan0=1-0=1
fw/‘lsecﬁtan@d@—[sec&]"“:secﬂ—se00=\/§—1

©Jo - 0 4

.ff(1+2y)2dy:f12(1+4y+4y2)dy=[y+2y2+§y3]f:(2+8+3—§) (1+2+4) =218 4%

. f, coshtdt = [sinh t](l) =sinh1 —sinh0 =sinh1 [or (e —e')]

/l :—/ ld:cz%[ln|m|]9:%(ln9—ln1):%ln970=ln9l/2:ln3
2 1 1
/1030 10° 0 1 9
Ini0| 10 1Inl0 1Inl0
\/5/2 1 \/_/ = o ™ ™ s
/ 1—t2 t:6/1/2 mdt_ﬁ[sm L/z *G[Sln ](é)—sm ](%)]:6(3_6):6(E>:”

- o ) _ w
2+1 A mdt:él[tan]t]ozzl(tan11_tan 10):4(1_0):71-

2

2 2 —
/ (Au™ +u ") du = [—4—2u_2+ln|u|J = {u—zz-l—lnu} =(-1+m2)—(-2+Inl)=2+1In2
1 - 1 1

4+u

f e“tdu=[e “+1L1 =e? —e¥ =e? —1 [orstart with e**! = e¥e!]
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sinz if0<z<m/2
If f(x) = ) then
cosz ifn/2<z<nm
Jo f(z)de = fow/z sinzdz + [, coszdr = [~ cosx}g/z + [sinz]7 ), = —cos 5 +cos0 + sinm —sin §

—0+140-1=0

Note that f is integrable by Theorem 3 in Section 5.2.

) 2 if —2<z<0 .
If flz) = then
f@) 4-22 fo<z<2

f_22 flz)dz = f322dm+ f02(4 — 2 dz = [2:1:](12 + [4z — -;—cc?’]?) =0-(-4)+(¥-0)=2
Note that f is integrable by Theorem 3 in Section 5.2
f(z) = =% is not continuous on the interval [—2, 1], so FTC2 cannot be applied. In fact, f has an infinite discontinuity at
z =0, so fi2 2% dx does not exist.
4
3

f(z) = = is not continuous on the interval [—1, 2], so FTC2 cannot be applied. In fact, f has an infinite discontinuity at
x

2
4 .
x=0,s0 / = dx does not exist.

1 Z

f(0) = sec@ tan @ is not continuous on the interval [r/3, 7|, so FTC2 cannot be applied. In fact, f has an infinite

discontinuity at x = /2, so f:/a sec 8 tan # df does not exist.

f(z) = sec? z is not continuous on the interval [0, 7], so FTC2 cannot be applied. In fact, f has an infinite discontinuity at

x=m/2s0 [ sec? z dz does not exist.

From the graph, it appears that the area is about 60. The actual area is
. 27
o @' e = [§2*/?] T = .81 0= 2 = 60.75. Thisis § of the

area of the viewing rectangle.

From the graph, it appears that the area is about % The actual area is

6 -3716 6
4 T 1 1 1 215
dr — — ] =_ + - = — = 0.3318.W
/1 ‘ v { -3 } L [3x3] 3-216 3 648 3318

1

It appears that the area under the graph is about % of the area of the viewing
rectangle, or about %7’1’ ~ 2.1. The actual area is

Jo sinzdz = [—cosz]j = (—cosm) — (—cos0) = —(=1) +1=2.
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50. Splitting up the region as shown, we estimate that the area under the graph 4

is £ 4+ 3(3- %) ~ 1.8. The actual area is

fO"/B sec?zdr = [tanz]]/® = /3 - 0= v/3 ~ 1.73.

o

52. fh/zsmxdac = [-cosx]fr’;iz —04+L2 -2

my—smx /‘
\/ _E x
-1

3z , 2 0,2 3z , 2 2z 2 3z 2
u”—1 u”—1 u” —1 u® -1 u” —1
53. = d = - d d —_ _d _ __d
9(x) /22 u? +1 v /Q;uz-f-l u+/0 u? + 1 v /0 u? +1 u—}/(; u? +1 v

—

EE]
i

=
, 2z -1 Bz)? -1 d 4z% -1 9z% — 1
et T o = —_2. .
9@ = (2z)2 +1 dx( 2+ Gorril (Bx)2+1 da (32) 42 + 1 9z2 + 1
T 1 1 z? dt tan T
54, @:/ =it= | __+/ - __+/
tan x 2+t4 tan x 2+t4 1 2+t4 1 \/2+t4 1 \/2+t4
, -1 d 1 d , 5 sec? x 2z
T) = —(————— (tanz) + —=— (7)) = — +
g() \/2+tan4xd$( ) \/2+w8d£v( ) V2+tantz 2+ a8
55, y—f\/- tsintdt = f\/_ tsmtdt+f1 Visintdt = —f\/_\/fsmtdt—i—fl Visintdt =
. d v/ sin
Yy ==Yz (sinyz) - -d; (V) + 2%/ ?sin(z?) - . (z°) = \/—2\/_\/— + 2%/2 sin(x®) (322)
- 2 . sin y/z
= 31‘7/ sm(acs) — —m
56. y = [°0 cos(u?)du = [77 cos(u?)du— [7 cos(u?)du =
y' = cos(25z?) - dm(5x) — cos(cos® ) - d(i (cosz) = cos(25x?) - 5 — cos(cos® x) - (—sinx)
= 5cos(25x?) + sinz cos(cos? x)
xT / / 4
57. F(x) :/ fdt = F'(z)=f(z)= / [smcef / 1+u ] =
1
1 2 4 8 8
F'(z) = V ;2”” 2 @) = ————”;2‘” op = 2EE 50 p(2) = VIT T = VBT,

58. For the curve to be concave upward, we must have y” > 0.

S 1 —(1 + 22)
— ——dt = = — e 7
Y /0 T+t+162 V= 172522 7 YV " Orzra2p

(1+2z) < 0,since (1+xz+2°)® >0forallz. (1+2z) <0 < =z < —3. Thus, the curve is concave upward

For this expression to be positive, we must have

on (—o0, -3).
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59. By FTC2, [ f'(z)dx = f(4) — f(1),50 17 = f(4) —12 = f(4) =17+12=29.

60. (a) erf(z) = —2—71_ /Oa: edt = /Oz e dt = 4 erf(x). By Property 5 of definite integrals in Section 5.2,
fob eﬁ‘52 dt = foa' e*t2 dt + fab e‘t2 dt, so

'/) eV dt = /0) e dt — /Oa e dt = 4erf(b) - gerf(a) = % /7 [erf(b) — erf(a)).

by = e erf(z) = ¢ = 2ze®” erf(z) 4+ e erf’ (z) = 2zy + e —2—e‘m2 [by FTC1] = 2zy+

NG

61. (a) The Fresnel function S(z) = [, sin(%¢*) dt has local maximum values where 0 = §'(z) = sin(%¢*) and

5

S’ changes from positive to negative. For = > 0, this happens when §x2 = (2n — 1) [odd multiples of 7] <
z? =2(2n—1) & x = \/4n — 2, nany positive integer. For z < 0, S’ changes from positive to negative where
%xz =2nm [evenmultiplesof 7] & z?=4n & z= -2 Vn. S’ does not change sign at z = 0.
(b) S is concave upward on those intervals where S”(x) > 0. Differentiating our expression for S’ (), we get

5" (x) = cos(Z2”) (2%x) = mxcos(E2”). Forz > 0, 5”(z) > 0 where cos(32°) >0 < 0< 32> < Zor

(2n — 3)m < 52> < (2n + §)m, nanyinteger < 0 <z < lorv4n —1 <z < /4n + 1, n any positive integer.

Forz < 0,5"(z) > 0 where cos(32°) <0 < (2n— )7 < Z2® < (2n — ), nany integer <

dn-3<a’<dn—-1 & VIn—-3<|r|<ViIn—-1 = VIn—-3<-2z<+In—-1 =
—VAn =3 > z > —/4n'— 1, so the intervals of upward concavity for z < 0 are (—v/4n — 1, —/4n — 3 ), n any
positive integer. To summarize: S is concave upward on the intervals (0, 1), (—v/3, —1), (V/3,V5), (—v7, —V5),
(V7,3),....

(¢) In Maple, we use plot ({int (sin(Pi*t"2/2),t=0..x),0.2},x=0..2) ;. Note that
Maple recognizes the Fresnel function, calling it Fresnels (x). In Mathematica, we use
Plot [{Integrate[Sin[Pi*t"2/2],{t,0,x}]1,0.2},{x,0,2}]. In Derive, we load the utility file

FRESNEL and plot FRESNEL_SIN (x). From the graphs, we see that [ sin(5t%) dt = 0.2 at x ~ 0.74.

0.75 0.25

[ y=02 /]
L

0 0.1

62. (a) In Maple, we should start by setting si:=1int (sin(t)/t,t=0..x);. In

Mathematica, the command is si=Integrate [Sin[t]/t, {t, 0, x}].

Note that both systems recognize this function; Maple calls it Si (x) and

4ar
Mathematica calls it SinIntegral [x]. In Maple, the command to generate }

the graph is plot (si,x=-4*Pi..4*Pi);. In Mathematica, it is ary
Plot [si, {x,-4*Pi,4*Pi}]. In Derive, we load the utility file EXP_INT and plot ST (x).
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(b) Si(x) has local maximum values where Si’(z) changes from positive to negative, passing through 0. From the

. d [*sint sin . .
Fundamental Theorem we know that Si’(z) = T / - dt = 22F , so we must have sin z = 0 for a maximum, and
x /o x

for z > 0 we must have z = (2n — 1)7, n any positive integer, for Si’ to be changing from positive to negative at z.
For z < 0, we must have x = 2nm, n any positive integer, for a maximum, since the denominator of Si’(z) is negative
for x < 0. Thus, the local maxima occur at x = «, —27, 3w, —4~n, bmw, —6m, .. ..

cosz sinz . .
— —— = 0. We can see from the graph that the first inflection

T 2

(¢) To find the first inflection point, we solve Si”(z) =
point lies somewhere between = 3 and z = 5. Using a root finder gives the value x ~ 4.4934. To find the y-coordinate
of the inflection point, we evaluate Si(4.4934) ~ 1.6556. So the coordinates of the first inflection point to the right of the

origin are about (4.4934, 1.6556). Alternatively, we could graph S”(z) and estimate the first positive z-value at which it

changes sign.
(d) 1t seems from the graph that the function has horizontal asymptotes at y ~ 1.5, with lirin Si(x) &~ £1.5 respectively.
T—TO0
Using the limit command, we get lim Si(x) = Z. Since Si(z) is an odd function, lim Si(z) = —%. So Si(z) has the

horizontal asymptotes y = +73.
(e) We use the £solve command in Maple (or FindRoot in Mathematica) to find that the solution is =~ 1.1. Or, as in
Exercise 61(c), we graph y = Si(z) and y = 1 on the same screen to see where they intersect.
63. (a) By FTCl, ¢'(z) = f(z). So¢'(z) = f(z) =0atx = 1,3,5,7, and 9. g has local maxima at z = 1 and 5 (since f = ¢’
changes from positive to negative there) and local minima at # = 3 and 7. There is no local maximum or minimum at

z =9, since f is not defined for x > 9.

(b) We can see from the graph that ‘fol fdt‘ < ’fffdt. < ‘f;’fdt» < ‘f;fdt‘ < 'f;}fdt‘. Sog(1) = ’fol fdt

>

9(5) = J§ Fdt = g(1) = | [ £ at| + |5 f |, and g(9) = [ S dt = g(5) — | [ f | + |7 £ dt]. Ths,
g9(1) < g(5) < ¢(9), and so the absolute maximum of g(z) occurs at z = 9.

(c) g is concave downward on those intervals where g” < 0. But ¢'(z) = f(z), (d) Y

] -
so " (z) = f'(x), which is negative on (approximately) (3,2), (4,6) and 5 4 /\6 8 /
0 I X

(8,9). So g is concave downward on these intervals.

64. (a) By FTCl, ¢'(z) = f(x). So ¢'(z) = f(z) = 0atx = 2,4, 6, 8, and 10. g has local maxima at x = 2 and 6 (since f = ¢’
changes from positive to negative there) and local minima at # = 4 and 8. There is no local maximum or minimum at

x = 10, since f is not defined for z > 10.
(b) We can see from the graph that ‘foz fdt‘ > ‘f;fdt‘ > ‘fffdt' > ‘f:fdt’ > ‘fslofdt.. So g(2) = ‘fozfdt.,

,and g(10) = [° f dt = g(6) — 'f;‘ fdt' + ‘fglofdt‘. Thus,

9(6) = Jy £t = 9(2) — | [3 1 dt| + | [} f

g(2) > g(6) > ¢(10), and so the absolute maximum of g(z) occurs at x = 2.
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() g is concave downward on those intervals where g’ < 0. But ¢'(z) = f(z), (d)
so ¢ (z) = f'(z), which is negative on (1, 3), (5,7) and (9, 10). So g is

concave downward on these intervals.

of 2 4 6 8 10

3/2 2
66. lim ! l—i— E+...+ %) = lim —Z 1/ /\/_d:c—[zm } :2—0=—
n—oo 1 n n n n—oo o 3 3

67. Suppose h < 0. Since f is continuous on [z + h, z], the Extreme Value Theorem says that there are numbers » and v in

[z + h, ] such that f(u) = m and f(v) = M, where m and M are the absolute minimum and maximum values of f on

[ + h, z]. By Property 8 of integrals, m(—h) < [ f(t)dt < M(—h);thatis, f(u)(—h) < — f:+h f()dt < f(v)(—h).

xz+h

z+h
Since —h > 0, we can divide this inequality by —h: f(u) < ’—ll / f(t)dt < f(v). By Equation 2,

g‘(ﬁ%ﬂ - %/Hh £(2)dt for h # 0, and hence f(u) < LEF h’,z —9@) < f(s), which is Equation 3 in the
case where h < 0.
d [ g e h(z) B |
68. o . flt)dt = o [ o f(t)ydt + /a f(@) dt] [where a is in the domain of f ]
d 9(=) d h(z)
e [‘/ fydt| + - f F(t) dtJ = —f(9(2)) ¢'(z) + f(h(z)) K (z)

= f(h@) I (z) — f(g(x)) ' (x)

69. (a) Let f(z) = vz = f'(z)=1/(2+/z)>0forz >0 = fisincreasing on (0,00).1fz > 0, then z* > 0, so
14 23 > 1 and since f is increasing, this means that f(l + :113) > (1) = V1+ 23 > 1forx > 0. Next let
gt)=t*—t = g ({t)=2t—1 = ¢'(t) >0whent > 1. Thus, g is increasing on (1, 00). And since g(1) = 0,
g(t) > 0whent > 1. Now let t = /T + &3, where z > 0. /I + 22 > 1 (fromabove) = t>1 = g(t)>0 =
(14 2%) — /14 2% >0 forz > 0. Therefore, 1 < /1+ 23 < 1+2° forz > 0.

(b) From part (a) and Property 7: fol ldz < fol VIFaBds < fol(l +23)de <
]y < fy VItatde < [z+ia']) © 1< [/ VI+atde<1+1=125
70. (a) For 0 < 2 < 1, we have 2 < . Since f(z) = cos z is a decreasing function on [0, 1], cos(z*) > cos z.
(b) /6 < 1, so by part (a), cos(z?) > cosz on [0,7/6]. Thus,

fow/ﬁ cos(z?) dz > fow/e cos zdx = [sin x]g/e =sin(r/6) —sin0=1 — 0= 1.
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2 2

.0 < ﬂ%ﬁ < % = m—lzon (5,10, so
10 2 10 10
0§/5 mdw</5 %dmz{—éL :_1i0_<_é):1i0:0'1'
72. (a) If z < 0, then g(z) = [ f(t)dt = [; 0dt=0. (b) y
If0 <@ < 1,then g(x) = [ f(t)dt = [ tdt = [§£°] = $a°. T [
If1 < x < 2, then . .
0 1 2 x

g(x) = [T f@)dt = [y f(t)dt+ [T f(t)dt = g(1)+ [{(2—t)dt

1 1 1 1.2

=112+t -3) =+ (20— 32°) - (2-%) =22 La? — 1. 1t g
Ifz > 2, then g(z) = [ f(t)dt = g(2) + [, 0dt =1+0=1.So /

0 if <0 0 ! 2
3z° if0<z<1

9(@) = 2:1:—%:13271 if 1<ax<2
1 if z>2

(c) f is not differentiable at its corners at = 0, 1, and 2. f is differentiable on (—o0, 0}, (0, 1), (1,2) and (2, 00).

g is differentiable on (—o00, 00).

73. Using FTC]1, we differentiate both sides of 6 + / 0 dt = 2Vx to get @) =2 ! = [f(z) =22
. 2 2 2vVz
To find a, we substitute © = « in the original equation to obtain 6 + Igl dt=2Va = 6+0=2Va =

3=vVa = a=09.

74 B=34 = fobezdfzz:?)foaezdm = [t =3[l = e —1=3("-1) = e =3"-2 =

b=1In(3e* — 2)

75. (a) Let F'(t) = fot f(s)ds. Then, by FTCI, F'(t) = f(t) = rate of depreciation, so F'(t) represents the loss in value over the

interval [0, ¢].

1
(b) C(t) = % [ A+ / f(s) ds} = i{%ﬂ@ represents the average expenditure per unit of ¢ during the interval [0, ¢],
i 0

assuming that there has been only one overhaul during that time period. The company wants to minimize average

expenditure.
(c) Ct) = % {A + /t f(s) ds}. Using FTC1, we have C'(t) = —%2 [A + /t f(s) ds] + %f(t).
0 0

) =0 = tf(t):A—k/otf(s)ds - f(t)z%[A%—/Otf(s)ds} — ),
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1 t
76. (a) C(t) = ?/ [f(s) + g(s)] ds. Using FTC1 and the Product Rule, we have
0

2

€0 = 1110 +90) - 5 [ U(6) +a(0)ds. et ') = 051 150 + 900 — 35 [ 1) + (o) ds =0 =
0 +90)- 3 [ 179 + o) ds =0 =[50 +9(0]-C)=0 = O =7+ 900

t'v.o v 1% vV L' v Vo,
<t< = RN = | Ls— L2 =L L2
(b) For 0 < ¢ < 30, we have D(t) /0<15 4508>d8 [155 QOOSL 15t 900t

SoD(t) =V = Vi Ye v o 6u-2-90 = t*—60t+900=0 =
15 900
(t—30)>=0 = t=30.So the length of time 7" is 30 months.

1YV v Voo, 1[fv. vV, Vv 3t
== [ (&= --—= ds =~ 1725~ 500
(© C(t) t/o <15 45o$+12,9005> s t[15s 900° " 38700° |,

1V, V., V 3>:1_Lt+ Vo

B (ﬁt “ 900" " 38700 ) =15 900" T 38,700

C'(t) = — o +

%
900 T 19,350 = t=2L5

1 1
t = 0 when ————19’350t = 300

|4 % 1% v
21.5) = — — —(21.5) + ———(21.5)> ~ 0. =L ~o0.
C21.5) = 15 ~ 550 (21-5) + 357709 (21:5)" = 0.05472V, C(0) = 17 ~ 0.06667V/, and

):__

C(3 v v 30) + 3—8—‘;60—(30)2 ~ 0.05659V, so the absolute minimum is C(21.5) =~ 0.05472V.

15 900
(d) As in part (c), we have C(t) = % - %t + 38};007:2’ so C(t) = f(t) + g(t) < y
%_%thF‘;ooﬁ:%_%ongootz 2 GRS
tz(lz,goo_ﬁ>:t<4_éo_g%o) & t:%:%:m.a y=C
0 215 30

This is the value of ¢ that we obtained as the critical number of C'in part (c), so we

have verified the result of (a) in this case.





