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Prefacé 'to the Tenth Edition

As the tenth edition is in course of preparation, one is reminded, almost
daily, of impending energy shortages and of the consequences for the
environment of using energy. In particular, the ways in which electricity is
generated are the subject of fierce debate. The environmentally conscious
champion the merits of renewable sources of electrical energy such as wind,
wave or tidal power. Pragmatists currently seem to favour the replacement
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Chapter one

Measurement

When you have studied this chapter, you should 1.1 The International
e be familiar with the International System of Measurement System 4
e be familiar with a variety of derived SI units 1.2 sl derived units 5

1.3 Unit of turning moment
or torque 6
1.4 Unit of work or

e be aware of the concepts of torque and turning moment
¢ be capable of analysing simple applications of the given Sl units
¢ have an understanding of work, energy and power

. . - . . energy 7
¢ be capable of analysing simple applications involving work, energy & W e O
and power 1.6 Efficiency 9
¢ have an understanding of efficiency and its relevance to energy and 1.7 Temperature 10
power Summary of important
e be capable of analysing the efficiency of simple applications formulae 10
¢ have an understanding of temperature and its units of measurement Terms and concepts 11

Electrical technology is a subject which is closely related to the technologies of mechanics,
heat, light and sound. For instance, we use electrical motors to drive machines such as
cranes, we use electric heaters to keep us warm, we use electric lamp bulbs perhaps to read
this book and we use electric radios to listen to our favourite music.

At this introductory stage, let us assume that we have some understanding of physics
in general and, in particular, let us assume that we have some understanding of the basic
mechanics which form part of any study of physics. It is not necessary to have an extensive
knowledge, and in this chapter we shall review the significant items of which you should
have an understanding. We shall use these to develop an appreciation of electrical
technology.

In particular, we shall be looking at the concepts of work, energy and power since
the underlying interest that we have in electricity is the delivery of energy to a point of
application. Thus we drive an electric train yet the power source is in a generating station
many kilometres away, or we listen to a voice on the phone speaking with someone
possibly on the other side of the world. It is electricity which delivers the energy to make
such things happen.
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The
International
System

The International System of Units, known as SI in every language, was
formally introduced in 1960 and has been accepted by most countries as their
only legal system of measurement.

One of the SI’s most important advantages over its predecessors is that it
is a coherent system wherever possible. A system is coherent if the product
or quotient of any two quantities is the unit of the resultant quantity. For
example, unit area results when unit length is multiplied by unit length.
Similarly unit velocity results when unit length or distance is divided by
unit time.

The ST is based on the measures of six physical quantities:

Mass

Length

Time

Electric current
Absolute temperature
Luminous intensity

All other units are derived units and are related to these base units by
definition.

If we attempt to analyse relationships between one unit and another, this
can be much more readily achieved by manipulating symbols, e.g. A for
areas, IV for energy and so on. As each quantity is introduced, its symbol will
be highlighted as follows:

Energy Symbol: 7

Capital letters are normally used to represent constant quantities — if they
vary, the symbols can be made lower case, i.e. /¥ indicates constant energy
whereas w indicates a value of energy which is time varying.

The names of the SI units can be abbreviated for convenience. Thus the
unit for energy — the joule — can be abbreviated to J. This will be highlighted
as follows:

Energy Symbol: 7 Unit: joule (])

Here the unit is given the appropriate unit abbreviation in brackets. These
are only used after numbers, e.g. 16 J. By comparison, we might refer to a
few joules of energy.

Now let us consider the six base quantities.

The kilogram is the mass of a platinum-iridium cylinder preserved at the
International Bureau of Weights and Measures at Sevres, near Paris, France.

Mass Symbol: m Unit: kilogram (kg)

It should be noted that the megagram is also known as the tonne (t).
The metre is the length equal to 1 650 763.73 wavelengths of the orange
line in the spectrum of an internationally specified krypton discharge lamp.

Length Symbol: / Unit: metre (m)

Length and distance are effectively the same measurement but we use the
term distance to indicate a length of travel. In such instances, the symbol d
may be used instead of /. In the measurement of length, the centimetre is
additional to the normal multiple units.
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m S| derived units

The second is the interval occupied by 9 192 631 770 cycles of the radiation
corresponding to the transition of the caesium-133 atom.

Time Symbol: ¢ Unit: second (s)

Although the standard submultiples of the second are used, the multiple
units are often replaced by minutes (min), hours (h), days (d) and years (a).
The ampere is defined in section 2.7.

Electric current Symbol: / Unit: ampere (A)

The kelvin is 1/273.16 of the thermodynamic temperature of the triple
point of water. On the Celsius scale the temperature of the triple point of
water is 0.01 °C, hence

0°C=273.15K

A temperature interval of 1 °C = a temperature interval of 1 K.
The candela is the unit of luminous intensity.

Although the physical quantities of area, volume, velocity, acceleration and
angular velocity are generally understood, it is worth noting their symbols
and units.

Area Symbol: 4 Unit: square metre (m?)
Volume Symbol: I/ Unit: cubic metre (m?)
Velocity Symbol: « Unit: metre per second (m/s)
Acceleration Symbol: Unit: metre per second

squared (m/s?)
Angular velocity Symbol: @ Unit: radian per second (rad/s)

The unit of force, called the newton, is that force which, when applied to
a body having a mass of one kilogram, gives it an acceleration of one metre
per second squared.

Force Symbol: F Unit: newton (N)
F=ma [1.1]

F [newtons] = m [kilograms] X  [metres per second’]

Weight The weight of a body is the gravitational force exerted by the earth
on that body. Owing to the variation in the radius of the earth, the
gravitational force on a given mass, at sea-level, is different at
different latitudes, as shown in Fig. 1.1. It will be seen that the
weight of a 1 kg mass at sea-level in the London area is practically
9.81 N. For most purposes we can assume

The weight of a body = 9.81m newtons [1.2]

where m is the mass of the body in kilograms.
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Fig. 1.1 Variation of weight
with latitude

n Unit of turning

moment or
torque

s 984 : London

&

=1 I

z |

£ i

598t |

P i

= I

P I

2 I

g I

2 980 F |

- 1

S I

5 i

) 1

= 1

978 1 1 : 1 1
20 40 60 80
Latitude (degrees)

A force of 50 N is applied to a mass of 200 kg. Calculate the acceleration.
Substituting in expression [1.1], we have
50 [N] =200 [kg] X a
a=0.25m/s’

A steel block has a mass of 80 kg. Calculate the weight of the block
at sea-level in the vicinity of London.

Since the weight of a 1 kg mass is approximately 9.81 N
Weight of the steel block = 80 [kg] x 9.81 [N/kg]
=785 N

In the above example, it is tempting to give the answer as 784.8 N but this
would be a case of false accuracy. The input information was only given to three
figures and therefore the answer should only have three significant numbers,
hence 784.8 ought to be shown as 785. Even here, it could be argued that the
80 kg mass was only given as two figures and the answer might therefore have

been shown as 780 N. Be careful to show the answer as a reasonable compromise.
In the following examples, such adjustments will be brought to your attention.

If a force F, in newtons, is acting at right angles to a radius r, in metres, from
a point, the turning moment or torque about that point is

Fr newton metres
Torque Symbol: 7" (or M) Unit: newton metre (N m)

If the perpendicular distance from the line of action to the axis of rotation is
7, then

T=Fr [1.3]

The symbol M is reserved for the torque of a rotating electrical machine.
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Unit of work
or energy

The SI unit of energy is the joule (after the English physicist, James P. Joule,
1818-89). The joule is the work done when a force of 1 N acts through a distance
of 1 m in the direction of the force. Hence, if a force F acts through distance /
in its own direction

Work done = F' [newtons] X / [metres]
= Fljoules
Work or energy Symbol: 7 Unit: joule (J)

W=Fl [1.4]

Note that energy is the capacity for doing work. Both energy and work are
therefore measured in similar terms.

If a body having mass m, in kilograms, is moving with velocity u, in
metres per second

Kinetic energy = +mu’ joules
W= L [1.5]

If a body having mass , in kilograms, is lifted vertically through height
h, in metres, and if g is the gravitational acceleration, in metres per second
squared, in that region, the potential energy acquired by the body is

Work done in lifting the body = mgh joules

W=9.81mh [1.6]

A body having a mass of 30 kg is supported 50 m above the earth’s
surface. What is its potential energy relative to the ground?

If the body is allowed to fall freely, calculate its kinetic energy
just before it touches the ground. Assume gravitational acceleration
to be 9.81 m/s.

Weight of body = 30 [kg] x 9.81 [N/kg] = 294.3 N
Potential energy = 294.3 [N] X 50 [m] = 14 700 J

Note: here we carried a false accuracy in the figure for the weight and
rounded the final answer to three figures.

If u 1s the velocity of the body after it has fallen a distance / with an
acceleration g

u=(2gl) =V(2x9.81 x 50) = 31.32 m/s
and
Kinetic energy = 1 % 30 [kg] X (31.32)* [m/s]’ = 14 700 ]

Hence the whole of the initial potential energy has been converted into
kinetic energy. When the body is finally brought to rest by impact with
the ground, practically the whole of this kinetic energy is converted into
heat.
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E Unit of power

Example 1.4

Since power is the rate of doing work, it follows that the SI unit of power is
the joule per second, or watt (after the Scottish engineer James Watt, 1736—
1819). In practice, the watt is often found to be inconveniently small and so
the kilowatt is frequently used.

Power Symbol: P Unit: watt (W)
F.
p=_El_p!
2 2 t
P=Fu [1.7]

In the case of a rotating electrical machine:

_ 2N, M
60

P=Mo [1.8]

where MV, is measured in revolutions per minute.
Rotational speed Symbol: N, Unit: revolution per minute (r/min)

In the SI, the rotational speed ought to be given in revolutions per second
but this often leads to rather small numbers, hence it is convenient to give
rotational speed in revolutions per minute. The old abbreviation was
rev/min and this is still found to be widely in use.

Rotational speed Symbol: #n,  Unit: revolution per second (r/s)

There is another unit of energy which is used commercially: the kilowatt
hour (kW h). It represents the work done by working at the rate of one
kilowatt for a period of one hour. Once known as the Board of Trade Unit,
it is still widely referred to, especially by electricity suppliers, as the unit.

1 kW h = 1000 watt hours
= 1000 x 3600 watt seconds or joules
=3 600 000 J=3.6 MJ

A stone block, having a mass of 120 kg, is hauled 100 m in 2 min
along a horizontal floor. The coefficient of friction is 0.3. Calculate

(a) the horizontal force required;
(b) the work done;
(c) the power.

(a)  Weight of stone = 120 [kg] X 9.81[N/kg] =1177.2 N
Force required = 0.3 x 1177.2[N] =353.16 N =353 N
(b)  Work done =353.16 [N] x 100 [m] =35 316 ]
=353Kk]

(¢) Power = 33316171 =294 W
(2 x 60) [s]



CHAPTER 1 INTERNATIONAL SYSTEM OF MEASUREMENT 9

Example 1.5

Efficiency

Example 1.6

Example 1.7

An electric motor is developing 10 kW at a speed of 900 r/min.
Calculate the torque available at the shaft.

900 [r/min]

Speed = -
60 [s/min]

=151/s

Substituting in expression [1.8], we have
10 000 [W] =T % 2 x 15[r/s]
T=106 N m

It should be noted that when a device converts or transforms energy, some
of the input energy is consumed to make the device operate. The efficiency
of this operation is defined as

energy output in a given time /¥,

Efficiency = - - —=—
energy input in the same time 17,
_ power output _ &
power input P,
Efficiency Symbol: 17 Unit: none
P,
=0 1.9
n P [1.9]

A generating station has a daily output of 280 MW h and uses 500 t
(tonnes) of coal in the process. The coal releases 7 MJ/kg when burnt.
Calculate the overall efficiency of the station.

Input energy per day is
W, =7 x10°x 500 x 1000
=350x10"]J
Output energy per day is
W, =280 MW h
=280x 10°% 3.6 x 10°=10.1 x 10" J
_w 10.1x 10"

0

= o T 288
W, 350 x10"

A lift of 250 kg mass is raised with a velocity of 5 m/s. If the driving
motor has an efficiency of 85 per cent, calculate the input power to
the motor.

Weight of lift is
F=mg=250%x9.81 =2452 N
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Temperature

Example 1.8

Summary of important
formulae

Output power of motor is
P =Fu=2452x5=12260 W
Input power to motor is

P, 12260

in =14450 W =145 kW
n 0.85

Some mention is required of temperature measurement, which is in the
Celsius scale. Absolute temperature is measured in kelvin, but for most
electrical purposes at an introductory stage it is sufficient to measure
temperature in degrees Celsius.

It should be remembered that both degrees of temperature represent the
same change in temperature — the difference lies in the reference zero.

Symbol: 6 Unit: degree Celsius (°C)

A useful constant to note is that it takes 4185 J to raise the temperature of
1 litre of water through 1 °C.

Temperature

An electric heater contains 40 litres of water initially at a mean
temperature of 15 °C; 2.5 kW h is supplied to the water by the heater.
Assuming no heat losses, what is the final mean temperature of the
water?

W,=25%x36x10°=9x10°]

Energy to raise temperature of 40 litres of water through 1 °C is

40x4185]
Therefore change in temperature is
6
o= 210 _s35ec
40 x 4185

0,=60,+A0=15+53.8=068.8°C

F [newtons] = m [kilograms]| X @ [metres per second squared| [1.1]

Le. F =ma

Torque 7 =Fr (newton metres) [1.3]

Work W =FI (joules) [1.4]

Work = Energy

Kinetic energy W =1 mu’ [1.5]

Power P=Fu (watts) [1.7]
=Two=Mw=2mnT [1.8]

Efficiency n=~P/P, [1.9]
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Terms and concepts

Force, when applied to a body, causes the body to accelerate.

Weight is the gravitational force exerted by the earth on a body.

Torque, when applied to a body, causes the body to rotationally accelerate.

Energy is the capacity to do work. When selling energy, it is measured in
kilowatt hours rather than joules.

Power is the rate of working.

Efficiency is the ratio of output power to input power. The difference
between output and input is usually due to wastage.

Exercises 1

. A force of 80 N is applied to a mass of 200 kg. Calculate
the acceleration in metres per second squared.

. Calculate the force, in kilonewtons, required to give a
mass of 500 kg an acceleration of 4 m/s?.

. What is the weight, in newtons, of a body of mass 10 kg?
. A ball falls off the top of a wall. Determine its downward
velocity 1's, 2 s and 3 s after commencing its fall.

. A body of mass 10 tonnes is acted upon by a force of
1 kN. How long will it take the body to reach a speed
of 5m/s?

. A 10000 tonne ship when slowing down with its
engines stopped is found to slow from 3 m/s to 2 m/s
in a distance of 40 m. Determine the average resistance
to motion.

. A body of mass 10 kg rests on a surface travelling
upwards with uniform velocity 3 m/s. Determine the
apparent weight of the body that it exerts on the

10.

surface. If the surface accelerated at 3 m/s% what
would be the new value of the apparent weight?

. A body of true weight 10 N appears to weigh 9 N

when its weight is measured by means of a spring
balance in a moving lift. What is the acceleration of the
lift at the time of weighing?

. A train having a mass of 300 Mg is hauled at a constant

speed of 90 km/h along a straight horizontal track.
The track resistance is 5 mN per newton of train
weight. Calculate (a) the tractive effort in kilonewtons,
(b) the energy in megajoules and in kilowatt hours
expended in 10 minutes, (c) the power in kilowatts and
(d) the kinetic energy of the train in kilowatt hours
(neglecting rotational inertia).

The power required to drive a certain machine at
350 r/min is 600 kW. Calculate the driving torque in
newton metres.
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Electrical systems involve the use of circuits. This chapter introduces you to the
construction of a circuit and classifies the principal parts which are to be found in every
circuit, and this will lead to an understanding of circuit diagrams. We shall also address
what happens to bring about the action of an electric circuit. The principal activity
involves electric charge — when we arrange for electric charge to move in a predetermined
way, we achieve an electric current. To produce this effect, we require to enlist the aid of
an electromotive force.

Georg Ohm related the electromotive force to the current in his simple law, and by
applying Ohm’s law we can find out about resistance, which is an important physical
property associated with all circuits. This will lead us to discover that circuits can have
conductors, insulators and resistors depending on the way in which we regard the
resistance of the component parts. And most significantly, we find that current passing
through a resistor produces heat — and this is important in practice since it determines
whether a cable can pass a small current or a large one.



CHAPTER 2 INTRODUCTION TO ELECTRICAL SYSTEMS 13

m Electricity and

the engineer

m An electrical

Fig. 2.1 Parts of an
electrical system

system

Electricity can be considered from two points of view. The scientist is
concerned with what happens in an electric system and seeks to explain its
mysteries. The engineer accepts that electricity is there and seeks to make
use of its properties without the need to fully understand them.

Because this book is written for engineers, let us concentrate on the
features of electricity which are most significant — and the most significant is
that an electrical system permits us easily to transmit energy from a source
of supply to a point of application.

In fact, electrical engineering could be summarized into four categories:

. The production of electrical energy.

. The transmission of electrical energy.
. The application of electrical energy.

. The control of electrical energy.

LN =

Most electrical engineers concern themselves with electronic control systems
which involve not only computers but also all forms of communications.
Transmission systems are varied and include the electronic communications
systems as well as the power systems which appear as tower lines. For the
electronics engineer, the source, which produces the energy, and the load to
which the energy is applied, are less significant; for the power engineer, they
are the most significant.

To understand an electrical system better, let us consider a simple situ-
ation with which we are familiar — the electric light in our room.

A Dbasic electrical system has four constituent parts as shown in Fig. 2.1.

1. The source. The function of the source is to provide the energy for the
electrical system. A source may usually be thought of as a battery or a
generator, although for simplicity we might even think of a socket outlet
as a source.

2. The load. The function of the load is to absorb the electrical energy
supplied by the source. Most domestic electrical equipment constitutes
loads. Common examples include lamps and heaters, all of which accept
energy from the system.

3. The transmission system. This conducts the energy from the source to the
load. Typically the transmission system consists of insulated wire.

4. The control apparatus. As the name suggests, its function is to control. The
most simple control is a switch which permits the energy to flow or else
interrupts the flow.

Transmission system
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Fig. 2.2 Simple lamp system

Fig. 2.3 Simple lamp circuit
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A simple system is shown in Fig. 2.2; a generator supplies a lamp bulb,
while a switch is included to put the lamp on and off. This example serves to
show two points. First, it illustrates the fundamental function of any electric
system which is to transport energy from the input source to the energy-
converting load. The generator could well be a long distance away from the
point of application to the lamp, and this transport of energy is called
transmission, i.e. the energy has been transmitted. Secondly, the sketch
of the system arrangement is difficult to interpret. The system used to take
the energy from the generator to the lamp is almost impossible to follow.
However, the alternative form of diagram shown in Fig. 2.3 is easy to follow
because symbols have replaced detailed sketches of the components.

Such symbolic diagrams do not take long to draw, but they involve a new
means of communication. This new means is the use of the symbols which
are shown separately in Fig. 2.4.

To obtain the best use of these symbols, it is necessary that everyone
should use the same system of symbols, and such a system is published in a
specification drawn up by the International Electrotechnical Commission
(IEC). It has the number IEC 617 and is published in the UK by the British
Standards Institution as BS EN 60617. Most engineers become familiar with
many of the symbols and it would be unusual to require to remember them
all. Most symbols are self-explanatory as each diagram is introduced.

It should be remembered that electrical circuit diagrams, as they are
called, are generally drawn to show a clear sequence of events; in particular,
the energy flows from source to load. Normally this flow should read from
left to right; thus, in Fig. 2.3, the generator was drawn at the left-hand side
and the lamp bulb at the right-hand side, with the controlling switch in
between.
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a Electric charge

Movement of
electrons

Electricity permits the source of energy to be remote from the point of
application. Electrical engineering is concerned with the study of how this
energy transmission takes place, but, before getting down to applying elec-
tric current to our use, it is necessary to become familiar with some of the
basic electrical terms.

An electrical system generally transmits energy due to the movement of elec-
tric charge. Although we need not study electric charge in depth, we need to
have some understanding in order to develop a system of measurement of
electrical quantities and also to relate these to the measurements which we
have reviewed in Chapter 1.

Electricity appears in one of two forms which, by convention, are called
negative and positive electricity. Electric charge is the excess of negative or
positive electricity on a body or in space. If the excess is negative, the body
is said to have a negative charge and vice versa.

An electron is an elementary particle charged with a small and constant
quantity of negative electricity. A proton is similarly defined but charged
with positive electricity whereas the neutron is uncharged and is therefore
neutral. In an atom the number of electrons normally equals the number of
protons; it is the number of protons that determines to which element type
the atom belongs. An atom can have one or more electrons added to it or
taken away. This does not change its elemental classification but it disturbs
its electrical balance. If the atom has excess electrons, it is said to be
negatively charged. A charged atom is called an ion.

A body containing a number of ionized atoms is also said to be electrically
charged. It can be shown that positively and negatively charged bodies are mutu-
ally attracted to one another whereas similarly charged bodies repel one another.

All electrons have a certain potential energy. Given a suitable medium in
which to exist, they move freely from one energy level to another and this
movement, when undertaken in a concerted manner, is termed an electric
current flow. Conventionally it is said that the current flows from a point of
high energy level to a point of low energy level. These points are said to have
high potential and low potential respectively. For convenience the point of high
potential is termed the positive and the point of low potential is termed the
negative, hence conventionally a current is said to flow from positive to negative.

This convention was in general use long before the nature of electric
charge was discovered. Unfortunately it was found that electrons move in
the other direction since the negatively charged electron is attracted to the
positive potential. Thus conventional current flows in the opposite direction
to that of electron current. Normally only conventional current is described
by the term current and this will apply throughout the text.

The transfer of electrons takes place more readily in a medium in which
atoms can readily release electrons, e.g. copper, aluminium, silver. Such
a material is termed a conductor. A material that does not readily permit
electron flow is termed an insulator, e.g. porcelain, nylon, rubber. There
is also a family of materials termed semiconductors which have certain
characteristics that belong to neither of the other groups.
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E Current flow

in a circuit

—_—
Current flow

Circuit

Fig. 2.5 Elementary circuit

n Electromotive

force and
potential difference

Fig. 2.6 Circuit diagram
conventions

For most practical applications it is necessary that the current flow continues
for as long as it is required; this will not happen unless the following con-
ditions are fulfilled:

1. There must be a complete circuit around which the electrons may move.
If the electrons cannot return to the point of starting, then eventually they
will all congregate together and the flow will cease.

2. There must be a driving influence to cause the continuous flow. This
influence is provided by the source which causes the current to leave at a
high potential and to move round the circuit until it returns to the source
at a low potential. This circuit arrangement is indicated in Fig. 2.5.

The driving influence is termed the electromotive force, hereafter called
the e.m.f. Each time the charge passes through the source, more energy
is provided by the source to permit it to continue round once more. This
is a continuous process since the current flow is continuous. It should be
noted that the current is the rate of flow of charge through a section of the
circuit.

The e.m.f. represents the driving influence that causes a current to flow.
The e.m.f. is not a force, but represents the energy expended during the
passing of a unit charge through the source; an e.m.f. is always connected
with energy conversion.

The energy introduced into a circuit is transferred to the load unit by the
transmission system, and the energy transferred due to the passage of unit
charge between two points in a circuit is termed the potential difference
(p.d.). If all the energy is transferred to the load unit, the p.d. across the load
unit is equal to the source e.m.f.

It will be observed that both e.m.f. and p.d. are similar quantities. How-
ever, an e.m.f. is always active in that it tends to produce an electric current
in a circuit whereas a p.d. may be either passive or active. A p.d. is passive
whenever it has no tendency to create a current in a circuit.

Unless it is otherwise stated, it is usual to consider the transmission
system of a circuit to be ideal, i.e. it transmits all the energy from the source
to the load unit without loss. Appropriate imperfections will be considered
later.

Certain conventions of representing the e.m.f. and p.d. in a circuit
diagram should be noted. Each is indicated by an arrow as shown in Fig. 2.6.
In each case, the arrowhead points towards the point of high (or assumed
higher) potential. It is misleading to show an arrowhead at each end of

Current flow
>

+ Source Load

i EMF PD

Source _T__ Load unit
_I

[
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Fig. 2.7 General symbol
for d.c. source

m Electrical units

the line as if it were a dimension line. An arrowhead is drawn on the
transmission system to indicate the corresponding direction of conventional
current flow.

It will be seen that the current flow leaves the source at the positive
terminal and therefore moves in the same direction as indicated by the source
e.m.f. arrow. The current flow enters the load at the positive terminal, and
therefore in the opposite direction to that indicated by the load p.d. arrow.
Energy is converted within the load unit and, depending on the nature of this
conversion, the p.d. may be constituted in a variety of ways. It is sufficient at
first to consider the p.d. as the change in energy level across the terminals
of the load unit. This is termed a volt drop since the p.d. (and e.m.f.) are
measured in volts.

In Fig. 2.6, the source indicated consists of a battery which delivers direct
current, i.e. current which flows in one direction. The source in Fig. 2.3
was shown as a circle which indicates that a rotating machine provided the
current. A general symbol for any type of source of direct current is shown
in Fig. 2.7.

Current flow

>
o>

Source Load
e.m.f. p.d.

Source | == Load unit

The unit of current is the ampere and is one of the SI base units mentioned
in section 1.1.

(a) Current

The ampere is defined as that current which, if maintained in two straight
parallel conductors of infinite length, of neglgible circular cross-section, and
placed 1 metre apart in a vacuum, would produce between these conductors a force
of 2 x 107 newtons per metre of length. The conductors are attracted towards
each other if the currents are in the same direction, whereas they repel each
other if the currents are in opposite directions.

Current Symbol: / Unit: ampere (A)

This definition is outstanding for its complexity. However, by using such
a definition, most of the electrical units take on suitable magnitudes. The
figure of 2 X 107 is therefore one of convenience and the definition will be
explained in section 7.3.

The value of the current in terms of this definition can be determined by
means of a very elaborately constructed balance in which the force between
fixed and moving coils carrying the current is balanced by the force of
gravity acting on a known mass.
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(b) Quantity of electricity

The unit of electrical quantity is the coulomb, namely the quantity of electricity
passing a given point in a circuit when a current of I ampere is maintained for
1 second. Hence

O [coulombs] = [ [amperes] X ¢ [seconds]
O=1It [2.1]

Charge Symbol: O Unit: coulomb (C)

From equation [2.1], it can be seen that the coulomb is an ampere second.
Batteries are used to hold charge but they are usually rated in ampere hours.

1 ampere hour = 3600 coulombs

The rate of charge passing a point is the current but it has become common
practice to describe a flow of charge as a current. We have already met this
misuse in the last paragraph of (a) above when it was said that the coils
were carrying a current. Thus we shall find the term ‘current’ being used to
indicate both a flow of charge and also the rate of flow of charge. It sounds
confusing but fortunately it rarely gives rise to difficulties.

If a charge of 25 C passes a given point in a circuit in a time of 125 ms,
determine the current in the circuit.

From equation [2.1]

o=1n
t 125%107°

(c) Potential difference

The unit of potential difference is the volt, namely the difference of potential
between two points of a conducting wire carrying a current of 1 ampere, when the
power dissipated between these points is equal to I watt.

The term voltage originally meant a difference of potential expressed in
volts, but it is now used as a synonym for potential difference irrespective
of the unit in which it is expressed. For instance, the voltage between the
lines of a transmission system may be 400 kV, while in communication and
electronic circuits the voltage between two points may be 5 V. The term
potential difference is generally abbreviated to p.d.

Electric potential Symbol: Unit: volt (V)

Electromotive force has the symbol E but has the same unit. Because p.d.s
are measured in volts, they are also referred to as volt drops or voltages.
By experiment, it can be shown that the relation corresponding to the
definition is

P
V==
I
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This is better expressed as
P=VI [2.2]

It also follows that

P
I 1+ 0

V=

V= [2.3]

SIES

That is, the p.d. is equal to the energy per unit charge.

A circuit delivers energy at the rate of 20 W and the current is 10 A.
Determine the energy of each coulomb of charge in the circuit.

From [2.2]
=Ly
7 10
From [2.3]

W=10=2x1=2]

(d) Resistance

The unit of electric resistance is the okm, namely the resistance between two
points of a conductor when a potential difference of 1 volt, applied between these
points, produces in this conductor a current of 1 ampere, the conductor not being a
source of any electromotive force.

Alternatively, the ohm can be defined as the resistance of a circuit in which
a current of 1 ampere generates heat at the rate of 1 watt.

Electric resistance Symbol: R Unit: ohm (Q)

If V' represents the p.d., in volts, across a circuit having resistance R, in
ohms, carrying a current /; in amperes, for time ¢, in seconds,

V=1IR [2.4]
or
-
Power P=1IV=1IR [2.5]
P2
"R

Also the energy dissipated is given by
W=Pt=I'Rt=1Vt
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E Ohm’s law

Fig. 2.8 Constant potential
difference/current characteristic
and the circuit from which it

is obtained

A current of 5 A flows in a resistor of resistance 8 (). Determine the
rate of heat dissipation and also the heat dissipated in 30 s.

P=I'R=5x8=200 W
W= Pt =200 x 30 = 6000 J

(e) Electromotive force

An electromotive force is that which tends to produce an electric current in
a circuit, and the unit of e.m.f. is the volt.

Electromotive force Symbol: £ Unit: volt (V)
The principal sources of e.m.f. are as follows:

1. The electrodes of dissimilar materials immersed in an electrolyte, as in
primary and secondary cells, i.e. batteries.

2. The relative movement of a conductor and a magnetic flux, as in electric
generators; this source can, alternatively, be expressed as the variation of
magnetic flux linked with a coil (sections 6.10 and 8.3).

3. The difference of temperature between junctions of dissimilar metals, as
in thermo-junctions.

One of the most important steps in the analysis of the circuit was undertaken
by Georg Ohm, who found that the p.d. across the ends of many conductors
is proportional to the current flowing between them. This, he found, was a
direct proportionality, provided that temperature remained constant. Since
the symbol for current is /, this relationship may be expressed as

Ve I [2.6]

Relation [2.6] is the mathematical expression of what is termed Ohm’s law.

Subsequent experimental evidence has shown that many other factors
affect this relationship, and that in fact few conduction processes give a
direct proportionality between p.d. and current. However, this relationship
is almost constant for many electrical circuits and it is convenient at this
introductory stage to consider only circuits in which the relationship is con-
stant. The corresponding characteristic is shown in Fig. 2.8.

Ammeter
measuring
current
g -
T - /;\
0 NG
Voltmeter
Test specimen C mcasurfng
(resistor) [?l?tentml
difference
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Example 2.4

Since the relationship is assumed constant, then

V
Z—R
1
where R is a constant termed the resistance of the conductor. The boxes used
in Figs 2.6 and 2.7 are generally used to represent a load with resistance
properties. The expression involving R is usually expressed as

VIR [2.4]

It should be noted that this relationship is derived from Ohm’s law and is
not a symbolic expression for it. Ohm’s law only notes the constancy of p.d.
to current provided that other physical factors remain unchanged, i.e. for
a given p.d. the current will vary in consequence of variation of external
physical factors.

A motor gives an output power of 20 kW and operates with an
efficiency of 80 per cent. If the constant input voltage to the motor is
200 V, what is the constant supply current?

P,=20000 W
py=to 2000 55000 w=pr
n
_ 22000 45
200

A 200 t train experiences wind resistance equivalent to 62.5 N/t. The
operating efficiency of the driving motors is 0.87 and the cost of elec-
trical energy is 8§ p/kW h. What is the cost of the energy required to
make the train travel 1 km?

If the train is supplied at a constant voltage of 1.5 kV and travels
with a velocity of 80 km/h, what is the supply current?

In moving 1 km

W, =Fl
=200 % 62.5 x 1000 = 12.5 x 10° ]
6
= o J1ZXA07 oy 100
n 087
But 1 kW h=3.6 x 10° J, hence
6
A0 kwh
3.6 x10°

Cost of energy =8.0 x4.0=32p
Work done in 1 h when moving with a velocity of 80 km/h is
(14.4 x 10° x 80) J
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Resistors

Symbol

Representing

Fixed resistor

Resistor symbol
found in old
diagrams, no
longer used

kA

or

Variable resistor
(or rheostat)

gl

Potentiometer

Fig. 2.9 Resistor types

and symbols

(a)
(b)

Fig. 2.10 Wire-wound
resistors. (a) Cement coated on
a ceramic former; (b) vitreous
enamel coated on a ceramic

former

Work done in 1 s (equivalent to the input power) is

6
w=320x103wzpin

60 x 60
But P, =VI
3
_ b _320x107 _oiaa
Voo 15%10°

A resistor is a device which provides resistance in an electrical circuit. The
resistance of a resistor is said to be linear if the current through the resistor
is proportional to the p.d. across its terminals. If the resistance were to vary
with the magnitude of either the voltage or the current, the resistor is said to
be non-linear. Resistors made from semiconductor materials (see Chapter 19)
are examples of non-linear resistors.

In this book resistors may be assumed linear, i.e. their resistance will be
assumed to remain constant when the temperature is maintained constant.
We cannot ignore the effect of temperature since all resistors dissipate heat
when operating, i.e. if a resistor passes a current /, then energy is brought
into the resistor at the rate 7°R. In order to release this heat energy, the
resistor must become warmer than its surroundings until it can release the
heat energy at the same rate as it is arriving. Therefore we have to assume
that the effect of this temperature rise is negligible.

All resistors have a power rating which is the maximum power that can be
dissipated without the temperature rise being such that damage occurs to the
resistor. Thus a 1 W resistor with a resistance of 100 € can pass a current of
100 mA whereas a + W resistor with the same resistance could only handle a
current of 50 mA. In either case, if the current level were exceeded for any
length of time, the resistor would overheat and might burn out.

Conductor wires and cables are similarly rated. Although we like to
assume that a conductor has no resistance, in fact all have some resistance.
The passing of a current therefore causes the conductor to heat, and if
the heating effect is too great the insulant material can be damaged. The
rating is therefore determined by the temperature which the insulant can
withstand.

Therefore if we wish to purchase a resistor, we require to specify not only
the required resistance but also the power rating. In electronic circuits, the
common standard rating are 1 W, + W, 1 W and 2 W. Thus if we required a
resistor to dissipate 1.1 W, we would select a 2 W resistor since the rating
must exceed the operational value. In power circuits, much higher ratings up
to a megawatt and more can be experienced, but such operational conditions
are expensive since we would be paying for energy which we are throwing
away. Thus power engineers avoid the use of resistors as much as possible,
seeking to utilize energy with minimal loss.

For the purpose of this book we will assume that the ratings have been
correctly specified, and therefore resistors will only have their resistances
given. Resistors can be made in a variety of ways but all fall into the follow-
ing categories given in Fig. 2.9. Most fixed resistors (also called non-variable
resistors) are used in electronic circuits and are made from carbon mouldings
or from metal-oxide film. These will be considered further in section 2.10,
but they have the common feature of having low power ratings. When ratings
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(b)
Fig. 2.11 Variable resistors.
(a) Wire-wound; (b) mains
‘dropper’ resistor with fixed
tappings; cement coated on a
ceramic former

m Resistor coding

Fig. 2.12 Colour coding
of resistors

of more than 1 W are required, this often involves the winding of a thin
nichrome wire on a ceramic former. As we shall see in section 3.6, the
thinner and the longer then the greater is its resistance. Usually the wire is
of a very fine gauge and the coil of wire is coated with a cement or a vitreous
enamel. Such resistors can operate up to 10 or 20 W and are shown in
Fig. 2.10. At the top end of the scale, when hundreds of watts and more are
involved, the resistors resemble lumps of cast iron or bent metal bars held
in cages so that the air can circulate and take away the waste heat.

Wire-wound resistors may be wound on what looks like a large washer
made from an insulant material such as card. An arm is mounted through the
centre of the washer. By rotating the arm the length of wire between the point
of contact and the end of the coil is varied, hence the resistance is varied.
Usually such variable resistors have three connections, being each end of the
coil plus the connection from the wiper arm. When all three connections are
used, the device is said to be a potentiometer, as shown in Fig. 2.11(a).

In some instances, fixed connections are made to the wire so that we know
the resistance offered between any two terminals. Such intermediate con-
nections are known as tappings. A typical tapped resistor, still often referred
to by its old name — the rheostat — is shown in Fig. 2.11(b).

We have already noted that there are resistors made from carbon mouldings or
from metal-oxide film. Both are small, if not very small, and therefore we would
find it almost impossible to mark them with a rating such as 47 000 Q, + watt.

In the case of carbon resistors, it is usual to identify the ratings by means
of rings painted around the resistors, as shown in Fig. 2.12. One of the bands
is always placed near to the end of the resistor and should be taken as the first
band. The first, second and third bands are used to indicate the resistance of
the resistor by means of a colour code which is also given in Fig. 2.12.

The application of this code is best explained by the example shown in
Fig. 2.12. Here the first two bands are orange and blue which, from the table,
are 3 and 6 respectively. Therefore we are being told that the resistance has
a numerical value of 36. The third band tells us how many zeros to put after
that number. In this case, the third band is green and there should be five
zeros, 1.e. the resistance is 3 600 000 Q.

Digit Colour
0 Black
1 Brown
2 Red
3 Orange
Bands 1 2 3 4 4 Yellow
[ L 1 | 5 Green
6 Blue
7 Violet
Ist number — L Tolerance 8 Grey
2nd number Number of noughts 9 White
Example = Tolerance Colour
£ 5% Gold
Orange 3 — L Silver 10% 10% Silver
Blue 6 Green 5 noughts 20% No colour band
3600 000
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Table 2.1 Standard values of
available resistors

Let us look at similar examples. If the first three bands were yellow,
violet and red, the resistance would be 4700 Q. However, if the colours were
orange, black and gold then the resistance would be 3.0 Q.

The fourth band is the tolerance which is the extent to which the actual
value of the resistance can vary relative to nominal value indicated by the first
three bands. Thus for the resistor shown in Fig. 2.12, the fourth band is silver,
which indicates that the resistance has a value between 3 600 000 + 10 per cent
and 3 600 000 — 10 per cent. Ten per cent of 3 600 000 is 360 000. Therefore
the resistance will be somewhere between 3 960 000 and 3 240 000 €.

This may seem an unexpected range of values, but it reflects the problems
in manufacturing resistors with specific resistances. Fortunately this is not a
problem in electronic circuits, and later we will see that the variation of resist-
ance values can be compensated with little detriment to circuit performance.

Some resistors have a fifth band which indicates a reliability factor which
is the percentage of failure per 1000 h of use. For instance, a 1 per cent fail-
ure rate would suggest that one from every hundred resistors will not remain
with tolerance after 1000 h of use.

Band 5 colours indicate the following percentages:

1 Brown
0.1 Red
0.01 Orange
0.001 Yellow

A list of readily available standard values appears in Table 2.1. All are avail-
able with 5 per cent tolerance whereas those in bold type are also available
with 10 per cent tolerance.

Ohms (Q) Kilohms (k€2) Megohms (M)
0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 22 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 39 39 390 3900 39 390 39
0.43 43 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1
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Example 2.6

m Conductors and

insulators

Ammeter

Battery _TT—_ Rod

Fig. 2.13 Experimental circuit

Many resistors, especially the metal-oxide resistors, can be so small or
of the wrong shape so that the colour coding is difficult to apply. Instead
a letter code is used and this is best explained by examination of the follow-
ing list:

Resistance Marking
0.47 Q R47
47Q 4R7

47 Q 47R

470 Q 470R

4.7 kQ 4K7

47 kQ 47K

4.7 MQ 4M7

A resistor is marked
Istband Brown
2nd band Black
3rd band Orange
No other band
What is its resistance and between what values does it lie?

Brown (1)=1 first unit

Black  (0)= 0 second unit

Orange (3)=_ 000 number of zeros
10000 = 10 kQ

Since no further band is given the tolerance is 20 per cent. The resistance
lies between 10 000 + 2000 and 10 000 — 2000, i.e. 12 kQ and 8 kQ.

So far, we have assumed that the current in a circuit will move around the
circuit as desired. But why should the electric charge pass along the wires
and not leak away as water might leak out from a faulty pipe? Or, if you cut
open an electrical insulated wire, why are there copper strands in the middle
surrounded by plastic and not plastic surrounded by copper?

In part, the answers to these questions have already been given in the
consideration of the structure of atoms and their electron shells. However,
more direct answers to the questions can be found by looking at a simple
experiment.

Make a number of rods of different materials so that each is identical in
size and shape. Connect each in turn to a battery which provides a source of
constant e.m.f.,; and measure the resulting current by a device called an
ammeter. The circuit arrangement is shown in Fig. 2.13.

By trying rods of different materials, it can soon be seen that those rods
made from metals permit quite reasonable currents to flow whereas those
made from non-metallic materials permit virtually no current to flow. Not
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Table 2.2 Typical electrical

materials

The electric
circuit in
practice

Conductors Insulators
Copper Glass
Aluminium Rubber
Silver Plastic
Platinum Air
Bronze Varnish
Gold Paper
Wood
Mica
Ceramic

Certain oils

all the metals conduct as well as each other, copper being better than steel,
aluminium being better than zinc and so on.

In this simple experiment, the non-metallic materials permit so little
current to flow that no comparison can be made between them, but never-
theless the observation may be made that there are certain materials
which permit current to flow and others which do not. Those materials
which permit current to flow are the conductors, while those that do not
permit current to flow are the insulators. Common examples of each are
given in Table 2.2.

This classification is rather oversimplified because no material com-
pletely stops the flow of current, just as no material permits the passage
of charge without some opposition. However, recalling the insulated wire,
the copper provides an easy path and the charge which would leak away
through the insulating plastic covering is negligible by comparison. Just
how negligible will become apparent in later studies, but in these initial
stages it is reasonable to consider the current as remaining within the
conductors.

Therefore the function of the conductors is to provide a complete circuit
at all points where there is material with free electrons. If at any part of the
circuit free electrons are not available, and if they cannot readily be intro-
duced into the material, then current will not flow in the circuit. Materials
with no energy gap readily provide the free electrons and are used to make
up a circuit, but those materials with sizeable energy gaps between the
valence and conduction bands are used to insulate the circuit and to contain
the current within the conductors.

Before finishing this introduction to electricity, there are certain practical
comments that require to be made. For instance, where do we get this elec-
tricity from?

The most common sources of electricity are the generating stations, most
of which are operated by electricity suppliers. However, a surprising amount
of electrical energy is generated by other commercial and private enterprises
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Summary of important
formulae

for their own use and possibly as much as 20 per cent of all the electrical
energy generated in the UK comes from such sources.

Generating stations contain rotating electric machines which generate the
electricity and these are driven either by steam turbines or by water turbines.
This latter form is described as hydroelectric.

Generated electricity is transmitted from one place to another by power
lines, in which the conductors are held up in the air clear of all activities on
the ground, or by cables, which are buried in the ground. In this way, the
electricity is brought to our industries and to our homes.

The need for conductor systems limits our ability to move electrical
devices about, i.e. to make them portable. In such cases, we use batteries.
Batteries can be used for torches, transistor radios, hearing aids, cameras,
watches and cars. In most of these examples we use a form of battery that
provides an amount of energy after which the battery is thrown away. Such
batteries are called primary cells. As a method of purchasing energy, they are
extremely expensive, but we are prepared to pay the appropriate costs for the
sake of convenience.

Primary cells can only provide small amounts of energy, and an alternat-
ive form of battery is required when more demanding tasks are to be under-
taken, e.g. the starting of a car engine. In such instances, we use a form of
battery made from a group of secondary cells and these have the advantages
both of being able to give larger amounts of energy and to be recharged with
energy. However, such devices are heavy and can therefore only be used in
such applications as cars.

Whether we use a generator or a battery, we nevertheless require a circuit
in which to utilize the available energy, and there are two circuit conditions
that are of extreme importance. These occur when the resistance is at its low-
est value of 0 € and at its highest value of infinity. In the first instance there
is no limit to the current that flows, the volt drop being zero (}'= IR =1 X 0),
and the circuit condition is termed a short-circuit. It follows that if two
points are connected by a conductor of zero resistance they are said to be
short-circuited.

In the second instance, no current can flow through an infinite resistance
(I =V/R = V/e =0). This circuit condition is termed an open-circuit, and
if two points are connected by a conductor of infinite resistance they are said
to be open-circuited. In effect this means that there is no connection between
them. For example, if the wire of a circuit is broken, there is no connection
across the break and the circuit is open-circuited.

Electric charge Q= 1t (coulombs) [2.1]
Voltage V= P/l (volts) [2.2]
V=w/0 [2.3]
V=1IR [2.4]

Power P=IV=I'R=VYR (watts) [2.5]
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Terms and concepts

Current is the rate of flow of electric charge in a circuit. The term is
often used to describe the flow of electric charge, e.g. ‘a current is
flowing in a circuit’; this is ambiguous but is so common that we have
to accept it.

A source supplies energy to a system.
A load accepts energy from a system.

Electric charge may be either positive or negative. Negative electrons
are free to move around a circuit thus transporting energy from source
to load.

To maintain a current, the source must provide a driving force called the
electromotive force (e.m.f.).

The potential difference across a load indicates in volts the energy lost
per coulomb of charge passing through the load.

Since the current is the rate of flow, its product with the voltage gives the
rate of energy transmission, i.e. the power.

Resistance is a measure of the opposition to the flow of charge through
a load.

Ohm’s law states that the ratio of voltage to current is constant, provided

other physical factors such as temperature remain unchanged.

The resistances of resistors can be identified by a code system.

Exercises 2

1. What is a simpler way of expressing 0.000 005 A? 11. A currentin a circuit is due to a p.d. of 10 V applied to
2. What is a simpler way of expressing 3 000 000 V? a resistor of resistance 100 2. What resistance would
3. A p.d. of 6 V causes a current of 0.6 A to flow in a permit the same current to flow if the supply voltage
conductor. Calculate the resistance of the conductor. were 100 V?
4. Find the p.d. required to pass a current of 5 A through ~ 12. For the }7/I characteristic shown in Fig. A| calculate
a conductor of resistance 8§ 2. the resistance of the load.
5. A 960 Q lamp is connected to a 240 V supply.
Calculate the current in the lamp. vy
6. A p.d. of 1.35 V causes a current of 465 uA to flow in 60
a conductor. Calculate the resistance of the conductor. 40
7. An accidental short-circuit to a 240 V supply is caused
by the connection of a component of 8.5 m€2 across 20
the supply terminals. What will be the short-circuit ! ! !
current? 20 40 60
8. A p.d.of 24 Vis applied to a 4.7 kQ resistor. Calculate T(mA)
the circuit current. Fig. A
9. What is the voltage across an electric heater of
resistance 5 Q through which passes a current of 13. Plot the }// characteristic for a 4.7 Q resistor, given
22 A? that the applied voltage range is 0-5 V.
10. Calculate the current in a circuit due to a p.d. of 10 V. 14. From the V// characteristic shown in Fig. B, derive
applied to a 10 kQ resistor. If the supply voltage is the R/I characteristic of the load.
doubled while the circuit resistance is trebled, whatis ~ 15. What is the charge transferred in a period of 8 s by

the new current in the circuit?

current flowing at the rate of 2.5 A?
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CHAPTER 2
Exercises 2 continued

(V)

60

40

20

20 40 60
I(mA)

Fig. B

16.

17.

18.

19.

20.

A p.d.of 12 Visapplied to a 7.5 Q resistor for a period
of 5 s. Calculate the electric charge transferred in this
time.

A voltage of 20 V is required to cause a current of 2 A
to flow in a resistor of resistance 10 Q. What voltage
would be required to make the same current flow if the
resistance were 40 27

A d.c. motor connected to a 240 V supply is developing
20 kW at a speed of 900 r/min. Calculate the useful
torque.

If the motor referred to in Q. 18 has an efficiency
of (.88, calculate (a) the current and (b) the cost of
the energy absorbed if the load is maintained constant
for 6 h. Assume the cost of electrical energy to be
8.0 p/kW h.

(a) An electric motor runs at 600 r/min when driving
a load requiring a torque of 200 N m. If the motor
input is 15 kW, calculate the efficiency of the motor
and the heat lost by the motor per minute, assuming
its temperature to remain constant.

21.

22,

23.

(b) An electric kettle is required to heat 0.5 kg of water
from 10 °C to boiling point in 5 min, the supply
voltage being 230 V. If the efficiency of the kettle is
0.80, calculate the resistance of the heating element.
Assume the specific heat capacity of water to be
4.2 kJ/kg K.

A pump driven by an electric motor lifts 1.5 m* of
water per minute to a height of 40 m. The pump has
an efficiency of 90 per cent and the motor an efficiency
of 85 per cent. Determine: (a) the power input to the
motor; (b) the current taken from a 480 V supply;
(c) the electrical energy consumed when the motor
runs at this load for 8 h. Assume the mass of 1 m® of
water to be 1000 kg.

An electric kettle is required to heat 0.6 litre of water
from 10 °C to boiling point in 5 min, the supply
voltage being 240 V. The efficiency of the kettle is
78 per cent. Calculate: (a) the resistance of the heating
element; (b) the cost of the energy consumed at
8.0 p/kW h. Assume the specific heat capacity of water
to be 4190 J/kg K and 1 litre of water to have a mass
of 1 kg.

An electric furnace is to melt 40 kg of aluminium per
hour, the initial temperature of the aluminium being
12 °C. Calculate: (a) the power required, and (b) the
cost of operating the furnace for 20 h, given that
aluminium has the following thermal properties:
specific heat capacity, 950 J/kg K; melting point,
660 °C; specific latent heat of fusion, 450 kJ/kg.
Assume the efficiency of the furnace to be 85 per cent
and the cost of electrical energy to be 8.0 p/kW h.
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When you have studied this chapter, you should 3.1 Series circuits 31

e recognize series- and parallel-connected loads 3.2 Parallel networks 36

¢ have an understanding that series-connected loads all pass the
same current

¢ have an understanding that parallel-connected loads all share the
same applied voltage

3.3 Series circuits versus
parallel networks 41
3.4 Kirchhoff’'s laws 42

e be familiar with Kirchhoff’s laws 3.5 Power and energy 49

e be capable of analysing relatively simple circuits and networks 3.6 Resistivity 52
containing series- and parallel-connected loads 3.7 Temperature coefficient of

¢ have an understanding of the power and energy associated with resistance 54

electric circuits and networks

e be capable of analysing the power and energy associated with loads
passing current

e be familiar with the temperature coefficient of resistance formulae 57

¢ be aware of the effects of temperature rise in electrical components Terms and concepts 58

3.8 Temperature rise 56
Summary of important

Life is rarely simple, and so it is with electrical technology. Our simple circuit with a
single source and a single load seldom exists except in battery torches. It follows that we
should look to systems with an increased number of loads. This does not require a huge
increase — it is generally sufficient to be able to handle two or three loads at a time but this
will let us appreciate the problems encountered in practice.

To handle two or more loads, we need to become adept at recognizing series-connected
loads and parallel-connected loads. This is best undertaken by first considering a
considerable number of worked problems and then trying more problems until such
operations become second nature. To do this, we are helped by two principles termed
Kirchhoff’s laws. We shall find that we use them almost all the time whenever we analyse
electrical circuits so they are very important to us.

We have already noted that resistors produce heat when passing current and this activity
requires further investigation. So there is a lot to be done in this chapter.



CHAPTER 3 SIMPLE DC CIRCUITS 31

m Series circuits

Switch

DC
source Lamp

3 ®

Fig. 3.1 Simple lamp circuit

[

Supply
voltage

Fig. 3.2 Incorrect lamp
connection

Fig. 3.3 Observation of a
current in a circuit

So far we have been introduced to the most simple circuit possible. In par-
ticular, the circuit contained only one load unit or resistor. We now need to
consider what happens when there are two or three load units.

Let us consider what might happen if the load unit were a lamp bulb as
shown in Fig. 3.1. In practice, we might find that the light output was
insufficient and decide to add in a second lamp to give more light. Let us
wire in this second lamp as shown in Fig. 3.2. It looks as though it should
work satisfactorily because the current from the first lamp now passes on to
the second. But when we switch on, both lamps give out very little light.
What has gone wrong?

We have already noted that the passing of a current through the lamp
filament wire can make it so hot that it gives out light. This only happens if
there is sufficient current to bring the temperature of the filament up to
about 3000 °C. However, if the current is insufficient then there is only a
dull glow from the filament because the temperature has not risen suffi-
ciently. This is what has happened with the circuit shown in Fig. 3.2 — but
why then is the current too small?

In the original circuit the lamp operated at its normal brightness by pass-
ing a certain current. This current was determined by the supply voltage in
conjunction with the resistance of the filament wire, the volt drop across the
filament being equal to that of the applied voltage. Since these two voltages
are equal, then, when the second lamp is inserted into the circuit, there will
be no voltage ‘left over’ to permit the current to even flow through the lamp.
In a complete circuit, it would not be possible for the current to flow in part
of the circuit and not the remainder. Some compromise must therefore be
reached whereby the first lamp “uses up’ less of the supply voltage and leaves
some for the second lamp. This compromise can be achieved by having less
current in the circuit; in this way, there is less voltage drop across the first
lamp and what remains can be used to pass the current on through the sec-
ond lamp. The current must be just the right amount to obtain the correct
balance in each lamp.

Owing to the lack of certain technical statements that can be made about
electric circuits, this explanation has been made in a rather non-technical
manner. It has also involved assumptions that can be shown only by experi-
ment. For instance, it has been assumed that the current in the first lamp is
the same as the current in the second lamp, i.e. that the current must be the
same in all parts of the circuit. This is illustrated by the experimental circuit
shown in Fig. 3.3.

In the circuit, one ammeter is connected to measure the current in lamp
1 while another ammeter measures the current in lamp 2. By observation,
it can be seen that no matter what voltage is applied to the input, the cur-
rent registered on each ammeter is the same. The current in each lamp is

O8O0

Supply A = ammeter

Lamp 1
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Fig. 3.4 Investigation of volt
drops in a series circuit

V l "
Ry

[
R,

[
R;

—

Fig. 3.5 Volt drops in

a series circuit

Supply | :

upply

voltage v
| E)

therefore the same, which is reasonable because where else can the current
flow having passed through the first lamp but on through the second lamp,
there being no other conduction path shown as available to the current?

Further experiments can be carried out to show that the same result is
obtained no matter how many lamps are connected in this way. When lamps,
or any other forms of load units, are connected in this manner, they are said
to be connected in series. In series circuits, the current must pass through
each and every one of the components so connected.

A further assumption was that the volt drops across each of the lamps
add up to give the total supply voltage. Again a simple experiment may be
arranged to illustrate this point as shown in Fig. 3.4. A voltmeter is con-
nected across each of the lamps while a further voltmeter is connected across
the supply. Different supply voltages are applied to the circuit, and it is
observed that no matter what supply voltage is applied, it is always equal to
the sum of the voltmeter readings across the loads. As with the investigation
of current, it is of no consequence how many load units are connected in
series: in each case the sum of volt drops across each of the components is
equal to the total supply voltage.

Replacing the lamps with simple resistive loads, as shown in Fig. 3.5, and
by using the notation shown, it can be observed that

= voltmeter

V=nr+nr+r [3.1]
Since, in general, V"= IR, then V', =IR,, V,= IR, and V; = IR;, the current
I being the same in each resistor. Substituting in equation [3.1],
V=IR,+IR,+ IR,

For the complete circuit, the effective resistance of the load R represents the
ratio of the supply voltage to the circuit current whence

V=IR
but V=1IR,+ IR, + IR,
hence [IR=1IR,+ IR, + IR,

and R=R, +R,+R; [3.2]

It does not matter how many resistors are connected in series, as relation
[3.2] may be amended as indicated in Fig. 3.6.
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Fig. 3.6 Series-connected °—_L

resistors
R,
R, I
i .
R, I
Ry

A

[
[
[

R,

Ry

R;

Ry

R=R;+R, R=R{+R,+R; R=R;+R,+R;+R,

m Calculate for each of the circuits shown in Fig. 3.7 the current

flowing in the circuit given that R =3 kQ.

Fig. 3.7 Circuit diagrams for La—
Example 3.1 220V 220V

.

In the first case

]=K=ﬂ=0.073A=73mA
R 3x10°

In the second case the circuit resistance is given by
R=R,+R,=3x10°+3 x 10° = 6000 Q
Vo220

—=——-=0.037A=37TmA
R 6000

Notice that doubling the circuit resistance has halved the current. This is
similar to the effect with the lamps in Fig. 3.2 where the two lamps in series

halved the current with the resulting diminution of the output of light.
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m Calculate the voltage across each of the resistors shown in Fig. 3.8
and hence calculate the supply voltage V.

Fig. 3.8 Circuit diagram 157
for Example 3.2
V
R "
2Q

R, "
30
R Vs
80

V,=IR =15x2=3.0V
V,=IR,=1.5x3=45V
V,=IR,=1.5x8=120V
V=V, +V,+V,;=30+45+120=19.5V

W For the circuit shown in Fig. 3.9, calculate the circuit current, given

that the supply is 100 V.

Fig. 3.9 Circuit diagram for 7
Example 3.3
V
Ry 40Q
R |50
R; 70Q

|



CHAPTER 3 SIMPLE DC CIRCUITS 35

"

e

)

Fig. 3.10 Voltage division
between two resistors

30V =

Ry

— 1

Fig. 3.11 Circuit diagram for
Example 3.4

Total resistance
R=R +R,+R;=40+50+70=160 Q
V100

—=—=0.625A
R 160

While there are many problems that can be set concerning series-
connected resistors, there is one form of application which is especially useful.
This involves the division of voltage between only two resistors connected in
series, as shown in Fig. 3.10. Given the supply voltage V it is required to
determine the volt drop across R;. The total resistance of the circuit is

R=R,+R,
and therefore the current in the circuit is
_
R +R

The volt drop across R, is given by

IR, = X R =V
R +R,
whence
Vi R .
V R +R )

The ratio of the voltages therefore depends on the ratio of the resistances.
This permits a rapid determination of the division of volt drops in a simple
series circuit and the arrangement is called a voltage divider.

A voltage divider is to give an output voltage of 10 V from an input
voltage of 30 V as indicated in Fig. 3.11. Given that R, =100 €, calcu-
late the resistance of R;.

h__ &

V' R +R

10 100
30 R +100

R, +100 = 3 x 100 = 300
R, =200 Q

Let us return to the problem of connecting in an extra lamp bulb. We
still appear to be in the dark although at least we have learned that extra
resistance in a circuit reduces the current. And we have learned that reducing
the current also reduces the light output from a bulb so we have to seek an
alternative method of connection. Such a method must ensure that the full
supply voltage appears across each bulb, thereby ensuring that each bulb
passes the required current. Such a method is connection in parallel.
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E Parallel

networks

Fig. 3.12 'Two lamps connected
directly to a source

Fig. 3.13 Correct lamp
connection

Owing to the lack of current in the series-connected lamps, each gave out
only a dull light. Yet when there had been only one lamp, there were no
difficulties because the full supply voltage had been applied to the lamp. In
the alternative method of connecction, the full voltage is applied to each
lamp as shown in Fig. 3.12.

This arrangement requires double wiring, which in this case is not neces-
sary since both wires at the top of the diagram are at the same high potential
while both at the foot of the diagram are at the same low potential. One wire
will do in place of two, as shown in the modified arrangement in Fig. 3.13.

The arrangement shown in Fig. 3.13 is very practical since we can now
use the wires previously installed to supply the first lamp bulb. Connecting
in the second lamp bulb as shown causes both the lamps to operate with full
brilliance just as we had intended.

The connection arrangements shown in Fig. 3.13 are termed a parallel
network. It will be noted that the current may pass from the top conductor
to the bottom by means of two paths which run side by side or in parallel
with one another. Each of these parallel paths is called a branch, so in this
case there are two branches in parallel.

Also it can be seen that there is more than one circuit, as indicated in
Fig. 3.14. In any arrangement in which there is more than one circuit, it is
appropriate to call the system a network. A network consists of two or more
circuits. An investigation of the relations in this simple network may be made
in a similar manner to that applied to the series circuit. Again the currents
may be investigated using the network shown in Fig. 3.15.

Supply
voltage

Supply °©
voltage o
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Fig. 3.14 Circuits in a simple
network

Fig. 3.15 Observation of

current in a network

Fig. 3.16 Investigation of volt
drops in a parallel network

Circuit 1 Circuit 2
)
® ® Circuit 3
0

]

ﬁ; 6 ¢

Supply
voltage

X &

It may be observed that no matter what supply voltage is applied, the sum
of the currents as indicated by ammeter A, and ammeter A, is always equal
to the supply current as indicated by ammeter A. It makes no difference
whether identical or dissimilar lamps are used — the results are always the
same and

I=1+1, [3.4]

This observation is reasonable because where else can the currents in each of
the lamps come from but from the source, there being no other conduction
path available to the currents in the lamps?

Further experiments can be carried out to show that the same results can
be obtained no matter how many lamps are connected in parallel. When
lamps, or any other forms of load units, are connected in parallel, the sum of
the currents in the load units is equal to the supply current.

By transforming the arrangement shown in Fig. 3.12 into the network
shown in Fig. 3.13, a further assumption is made that the volt drops across
each of the lamps are the same as that of the supply voltage. Again a simple
experiment may be carried out to illustrate this point as shown in Fig. 3.16.

b 80 80
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Fig. 3.17 Currents in a parallel
network

o >

I 1, I3

(e

In this investigation, voltmeters are connected across each of the lamps while
a further voltmeter is connected across the supply. Different supply voltages
are applied to the network and it is observed that no matter what supply
voltage is applied, the voltages across each of the loads are equal to it.

As with the investigation of current, it is of no consequence how many
load units are connected in parallel; in each case, the volt drop across each of
the branches is equal to the voltage applied to the network.

Replacing the lamps with simple resistive loads, as shown in Fig. 3.17,
and by using the notation shown, it may be observed that

I=1+1L+]1, [3.5]

Since in general

V V V V
I=—, then/j=—,,=— and L =—
R R, ) s
the voltage across each branch being the same. Substituting in equation [3.5],
we get

For the complete network, the effective resistance of the load R represents
the ratio of the supply voltage to the supply current, whence

=
R
but I=V+£+V
R R K
hence
VoV v v
—_— = — 4 —
R R R R
and

=— G —4—= [3.6]

It does not matter how many resistors are connected in parallel, as relation
[3.6] may be amended as indicated in Fig. 3.18.
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Fig. 3.18 Parallel-connected ° ° °

I I R IR IRIRIE

O o (e
1,11 i_ 1,1, 1.1
R R, R, R R R, R, R,

i_1,1 1
R R R R
Calculate the supply current to the network shown in Fig. 3.19.

Let the currents be 7, 7, and 7, as indicated on the network.

=210 54
R 22

L= 10 54
R, 44

I=01+1,=50+25=75A

Fig. 3.19 Circuit diagram for
Example 3.5

SENIERENN  For the network shown in Fig. 3.20, calculate the effective resistance

and hence the supply current.

1 1 1 1 1 1 1

—=—t—t—=—+—
R R R R 68 47 22
=0.147 +0.213 + 0.455 = 0.815

hence

Fig. 3.20 Circuit diagram for o ?

Example 3.6
12V
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Fig. 3.21 Circuit with two
resistors in parallel

R, R,| |20

(e

Fig. 3.22 Circuit diagram for
Example 3.7

As with series circuits, so with parallel networks there are many problems
that may be posed, but there is one form of problem which is especially
useful. This involves the combination of two resistors in parallel, as shown
in Fig. 3.21. In this case, the effective resistance R is given by

1_1, 1 _R+R
R R R RR
hence
- Rk [3.7]
R +R, '

Thus the total effective resistance in the case of two resistors connected in
parallel is given by the product of the resistances divided by the sum of the
resistances. This cannot be extended to the case of three or more parallel
resistors and must only be applied in the two-resistor network.

It may also be convenient to determine the manner in which two parallel
resistors share a supply current. With reference again to Fig. 3.21,

RR
V=IR=T—"
R +R,
also V"= I,R,, hence
R
I =1—2— [3.8]
R +R

So, to find how the current is shared, the current in one resistor is that
portion of the total given by the ratio of the other resistance to the sum of
the resistances. This permits a rapid determination of the division of the
currents in a simple parallel network.

A current of 8 A is shared between two resistors in the network shown
in Fig. 3.22. Calculate the current in the 2 Q resistor, given that

(@) Ry=2C
(b) R, =4Q.
R 2
(@ L, =I———=8x =40A
R +R 2+2

From this, it is seen that equal resistances share the current equally.

R
L =8x + =53A
R + R, 442

(b) I,=1

This time it is the lesser resistance which takes the greater part of the
supply current. The converse would also apply.
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Series circuits

versus parallel It can take a little time to sort out one circuit arrangement from the other

networks
should be useful.

when they are being introduced, so the comparisons given in Table 3.1

Table 3.1
Series circuit

Parallel network

1A
Vo,
Current The current is the same in all
parts of the circuit
I=I=L=1
Voltage The total voltage equals the

sum of the voltages across the
different parts of the circuit

V="r+V,+V;

Resistance The total resistance equals
the sum of the separate
resistances

R=R,+R,+R,

The total current supplied to the
network equals the sum of the
currents in the various branches

I=I+1L+1,

The voltage across a parallel
combination is the same as the
voltage across each branch

V=r=r=r

The reciprocal of the equivalent
resistance equals the sum of the
reciprocals of the branch resistances

Here are some points to remember:

1. In a series circuit, the total resistance is always greater than the
greatest resistance in the circuit. This serves as a check when combining

series resistances.

2. In a parallel network, the total resistance is always less than the
smallest resistance in the network. Again this serves as a useful check
especially as it is easy to forget to invert the term 1/R during the evalua-

tions of R.
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m Kirchhoff’s laws

L—=L+1—I,+I5=0

Fig. 3.23 Kirchhoff’s first

(current) law

3. To tell the difference between series and parallel, if in doubt imagine
being an electron faced with the problem of passing through the circuits.
If the electron has no choice but to pass through all the load units, then
they are in series. If the electron has the choice of which load unit through
which to pass, then the load units are in parallel.

4. Finally there are certain practical points to note about the two systems.
For instance, with the parallel lamp arrangement, either lamp could fail
to operate without affecting the operating of the other lamp. Lamp bulbs
only last a certain length of time after which the filament breaks and the
circuit is interrupted. This only interrupts the current flow in one branch
and the remaining branch (or branches if there are more than two lamps)
continues to pass current as before. However, if lamps are connected in
series and one fails then all the lamps are extinguished.

This is a problem that we sometimes see with Christmas tree lights.
One bulb fails and all (or at least a number of) the lights go out. The
advantage of series-connected bulbs is that they share the supply voltage,
hence cheap low voltage lamps may be used. For most lighting purposes, this
advantage is far outweighed by the unreliability of having most of the lamps
giving out light should one fail and greater reliability is provided by the
parallel arrangement. Therefore the parallel arrangement is highly preferable
in practical terms.

From our consideration of series and of parallel connections of resistors, we
have observed certain conditions appertaining to each form of connection.
For instance, in a series circuit, the sum of the voltages across each of the
components is equal to the applied voltage; again the sum of the currents in
the branches of a parallel network is equal to the supply current.

Gustav Kirchhoff, a German physicist, observed that these were par-
ticular instances of two general conditions fundamental to the analysis of any
electrical network. These conditions may be stated as follows:

First (current) law. At any instant the algebraic sum of the currents at a junc-
tion in a network is zero. Different signs are allocated to currents held to
flow towards the junction and to those away from it.

Second (voltage) law. At any instant in a closed loop, the algebraic sum of the
e.m.f.s acting round the loop is equal to the algebraic sum of the p.d.s
round the loop.

Stated in such words, the concepts are difficult to understand but we
can easily understand them by considering some examples. In Fig. 3.23, the
currents flowing towards the junction have been considered positive and
those flowing away from the junction are negative, hence the equation given
below the diagram. Had we said that currents out were positive and those in
were negative, we would have obtained a similar equation except that the
polarities would be reversed — but multiplying both sides of the equation by
—1 would bring us to that given in the diagram.
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SENERERN  For the network junction shown in Fig. 3.24, calculate the current [,
giventhat I, =3 A, ,=4Aand I, =2 A.

L-L+1-1,=0
L=-1L+L+1,=-3+4+2=3A

Fig. 3.24 Circuit diagram for
Example 3.8

L—L+IL—1,=0

D ENERERN  With reference to the network shown in Fig. 3.25, determine the rela-
tionship between the currents 1;, I,, I, and I;.

Fig. 3.25 Circuit diagram for
Example 3.9

For junction a:

L+1L,-1=0
hence L=1+1,
For junction b:

L+1,-1,=0

L=1,- I

L+IL,=L-1, and I-L+I,+1,=0

From the result of this example, it may be noted that Kirchhoff’s first law
need not only apply to a junction but may also apply to a section of a net-
work. The result of the above problem indicates the application of this law
to the dotted box indicated in Fig. 3.25. It follows that knowledge of the per-
formance of quite a complicated network may not be required if only the
input and output quantities are to be investigated. This is illustrated by the
following problem.
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Example 3.10

Fig. 3.26 Circuit diagram for
Example 3.10

Example 3.11

Fig. 3.27 Circuit diagram for
Example 3.11

For the network shown in Fig. 3.26, I, = 2.5 A and I, = —-1.5A.
Calculate the current 7;.

o—3> II II > o
R 15
2

I
o—> I
R
By Kirchhoff’s law:
L+L+1=0

L=-I,-,=-25+15=-10A

Kirchhoff’s first law may be applied at any point within a network. This
is illustrated by Example 3.11.

Write down the current relationships for junctions a, b and c of the
network shown in Fig. 3.27 and hence determine the currents /,, I,
and I.

L=3A a

>

Y1,

For junction a:
L -,-1I;=0
L=I-1;=3-1=2A
For junction b:
L+1,-1,=0
L=1,-L=1-2=-1A
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Fig. 3.28 Series—parallel
network

This answer shows that the current is flowing from b to c. So far, we have
drawn all our diagrams so that the current flows from the top conductor to the
bottom conductor so it might be strange that here we have a current going
upwards. The reason is that we draw a diagram assuming that the current
flow is downwards. If subsequently we find that the current is flowing in the
reverse direction then it only shows that our assumption was incorrect. If it
were important then we should redraw the diagram so that b appears above c.

For junction c:
L-1,-1,=0
Ii=L-1,=1+1=2A

The examples chosen so far have permitted the addition and subtraction
of the currents at junctions. Parallel arrangements require the division of
currents, a point that has already been noted. However, it may also have
been observed from the examples given that with more than two resistors,
it is possible to make considerably more complicated networks. And these
networks need not fit into either the series or the parallel classifications.
The network shown in Fig. 3.28 illustrates this observation.

—.

Ry
15 I, R,
I —1 I, I
Is R;
Rz R6 R7

. T

Starting with the points that may be readily observed, it can be seen that
R, is in parallel with R;. Also Ry is in parallel with R,. In each case the cur-
rent divides between the two components and then comes together again.

What of R,? It is tempting to think that it is in parallel with R, probably
because both 7, and /; are derived from /7, and, after passing through their
respective resistors, the currents immediately come together again. However,
I is not derived immediately from /; and instead there is the intervening
network comprising R, and R;. Because the currents are not immediately
derived from 7, then their respective branches are not in parallel.

Here R, is in parallel with the network comprising R,, R;, R, and R;. In
this case it should be remembered that this specified network takes the
current /5, and 75 and /, are directly derived from 7;.

Finally it may be observed that the network comprising R, and R; is in
series with the network comprising R, and R;. In this case, the current in the
one network has no choice but to then pass through the other network, this
being the condition of series connection. It is, however, the networks that are
in series and not the individual resistors, thus you cannot describe R, alone
as being in series with, say, R;. This would only apply if you could be sure
that only the current in R, then passed to R,, which cannot be said in the
given arrangement.
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m For the network shown in Fig. 3.29, determine /; and I,.

L= o -1,
R, + R,
11:R2+R3~[3:60+30><1:1.5A
R, 60
0=5L+1L-1

L=1-I,=15-1=05A

Fig. 3.29 Circuit diagram for
Example 3.12

7 - This example illustrates the third arrangement of connection of three
resistors, the other arrangements being the three resistors all in series or
E all in parallel. The network shown in Fig. 3.29 is termed a series—parallel
» 1 network, i.e. R, is in series with the network comprising R, in parallel
== : with R;.
Kirchhoff’s second (voltage) law is most readily exemplified by considera-
T tion of a simple series circuit as shown in Fig. 3.30.
Vs In this circuit
E=Vi+1,+7;
T In even the most simple parallel network, there are three possible loops
Fig. 3.30 Kirchhoff’s second that may be considered. Figure 3.31 shows a reasonably simple arrangement
(voltage) law in which the three loops are indicated.

SENIEERER  For the network shown in Fig. 3.31, determine the voltages V; and V.

For loop A:
E=V+7,
N=E-V,=12-8=4V
For loop B:

0=—V,+ Vi+V,
Vi=V,-V,=8-2=6V
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Fig. 3.31 Circuit diagram for
Example 3.13

Fig. 3.32 Potential difference
across series-connected resistors

N
— ———
| S|
-— P —
12 Vs
Loop C E=12V V,=8V V=2V
E_j T Loop A T [] Loop B T []
J/

For loop C:
E=V+V;+7V,
12=4+6+2=12

thus confirming the results obtained.

It is important to note that there need not be an e.m.f. in a given loop and
this was instanced by loop B. Also it is important to note that p.d.s acting in
a clockwise direction round a loop are taken to be negative, which compares
with the treatment of currents flowing out from a junction.

The application of Kirchhoff’s second law need not be restricted to actual
circuits. Instead, part of a circuit may be imagined, as instanced by Fig. 3.32.
In this case, we wish to find the total p.d. across three series-connected
resistors, i.e. to determine V. Let 7 be the p.d. across the imaginary section
shown by dotted lines and apply Kirchhoff’s second law to the loop thus
formed.

0==V+1+V,+V; and V=V +V,+1;

This is a result that was observed when first investigating series circuits but
now we may appreciate it as yet another instance of the principle described
as Kirchhoff’s second law.

&1

H :

Vs
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SENIEREMER  Calculate V) for the network shown in Fig. 3.33.

Fig. 3.33 Circuit diagram for
Example 3.14

Fig. 3.34 Alternative circuit
layout for Fig. 3.33

£

[

2

Fig. 3.35 Circuit loop with
three sources

S ]

R |50 R,| 400

Ri| |150 Ri| |10
! | I
C

For branch A, let V. be the voltage at A with respect to C:

R 15
Vie=——— V= x20=75V
R + R, 25415
For branch B:
R, 1
Vic 4 0 x20=4.0V

R, + R, 40 +10
Applying Kirchhoft’s second law to loop ABC:
0=Vipg+ Vect Vea=Vig+ Vic— Vic
Vig=Vac—=Vpe=75-40=35V

The rearrangement of the drawing layout of a network sometimes
gives rise to confusion and it is worth noting that the network used in this
example is often drawn in the form shown in Fig. 3.34. This form of circuit
diagram is called a bridge.

The illustrations of Kirchhoff’s second law have so far only dealt with net-
works in which there has been only one source of e.m.f. However, there is no
reason to limit a system to only one source and a simple circuit involving three
sources is shown in Fig. 3.35. Applying Kirchhoft’s second law to this circuit,

E+E,—E=V
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Fig. 3.36 Circuit diagram for

Example 3.15

Power and
energy

Figure 3.36 shows a network with two sources of e.m.f. Calculate the
voltage V| and the e.m.f. F,.

b b ]
A

T T

Applying Kirchhoff’s second law to the left-hand loop,
E=1V+7,
N=E-V,=10-6=4V
The right-hand loop gives
—E, ==V, -1,
E=V,+1;=6+8=14V
These results may be checked by considering the outside loop
E-E=V,-T;
10-14=4-8

which confirms the earlier results.

Finally it may be observed that this section has merely stated Kirchhoff’s
laws and illustrated each in terms of its isolated application. Every time a
problem requires that currents be added then the addition conforms to the
principle described by the first law while all voltage additions conform to the
principle described by the second law. Kirchhoff’s laws need not be com-
plicated affairs and nine times out of ten they apply to two currents or two
voltages being added together. Nevertheless, the laws may be applied jointly
to the solution of complicated networks.

By consideration of the problems of our wiring, it has been seen that a reduc-
tion in the voltage and in the current to the lamp bulbs causes their light out-
put to be reduced. The light output is the rate at which the light energy is
given out, i.e. the power of the lamp. It can be shown that

PV
and Po ]
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Example 3.16

Example 3.17

whence
P VT [3.9]

But it may be recalled that the volt is that potential difference across a con-
ductor when passing a current of 1 A and dissipating energy at the rate of
1 W. It follows that

P=VI [3.10]

A 230 V lamp is rated to pass a current of 0.26 A. Calculate its power
output. If a second similar lamp is connected in parallel to the lamp,
calculate the supply current required to give the same power output
in each lamp.

P=VI=230x0.26=60 W
With the second lamp in parallel:
P=60+60=120 W

]=£=@=0.52A
Vo230

Assuming the lamps in Example 3.16 to have reasonably constant
resistance regardless of operating conditions, estimate the power
output if the lamps are connected in series.

For one lamp

U INTTYS
I 026

With both lamps connected in series, the circuit resistance is
R=2885+885=1770 Q

I:K:ﬂzo.ISA
R 1770

P=VI=230x0.13=30 W

This is the combined power output and therefore each lamp has an out-
put of 15 W. No wonder we could not get much light when we connected the
lamps in series. Instead of 60 W, we were only developing 15 W, a quarter of
what we expected from each bulb. Remember that this is only an estimate
since no allowance has been made for the effect of the different operating
conditions due to temperature rise as the lamp gives out more light.

Consider again relation [3.10]. In a simple load V"= IR, and substituting
in equation [3.10],

P=(IR)=1IR

P=1I'R [3.11]
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Seen in this form, the expression emphasizes the power-dissipation effect
of a current which creates heat in a conductor. This is generally known as
the heating effect of a current and is termed the conductor or I’R loss
since the energy transferred in this way is lost to the electrical system. In
the heating bar of an electric radiator or the heating element of a cooker, the
IR loss is beneficial, but in other cases it may be simply energy lost to the
surroundings.

It should be noted that the expression /2R represents a power, i.e. the rate
at which energy is transferred or dissipated, and not the energy itself. Thus,
strictly speaking, the previous paragraph is somewhat misleading, but the
method of expression is that commonly used. So the power loss describes the
energy lost! This is due to the electrical engineer’s preoccupation with power
and is a consequence of current being the rate of flow and not the flow itself.
Once again we meet with this misuse of terminology and again you should
remember that it rarely seems to cause difficulties. It is sufficient simply to
bear in mind that this double use of ‘current’ appears throughout electrical
engineering.

Should the energy be required, then

W=Pt=VI [3.12]

and W=IRt [3.13]

This energy is measured in joules, but for the purposes of electricity supply,
the joule is too small a unit. From relation [3.11], it can be seen that the unit
could also be the watt second. By taking a larger power rating (a kilowatt)
and a longer period of time (an hour) then a larger unit of energy (the
kilowatt hour) is obtained. Electricity suppliers call this simply a unit of
electricity, and it forms the basis of electricity supply measurement whereby
consumers are charged for the energy supplied to them.

A current of 3 A flows through a 10 Q resistor. Find:

(a) the power developed by the resistor;
(b) the energy dissipated in 5 min.

() P=IR=3x10=90 W
(b)  W=Pr=90x (5 x 60) = 2700 J

A heater takes a current of 8 A from a 230V source for 12 h.
Calculate the energy consumed in kilowatt hours.

P=VI=230x8=1840 W =1.84 kW
W=184x12=22kWh
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Example 3.20

(e

Fig. 3.37 Circuit diagram for
Example 3.20

a Resistivity

Fig. 3.38 Length/resistance
characteristic of a conductor

Example 3.21

For the network shown in Fig. 3.37, calculate the power developed by
each resistor.

R 4
_&:R2=9X8+4
P, =R =3x8=T2W
L=I-1,=9-3=6A
P= R, =6 x4=140 W

L=1 =3A

Note: it is tempting to leave this answer as 144 W but the accuracy of the
input information is only to one significant figure. Even assuming a second
figure, the answer can only be given to two figures, hence the 144 should be
rounded to the second significant figure which is 140. Therefore it would be
more consistent to give the answer as 140 W and the other power as 70 W.
However, at this stage the solution answers are sufficient but beware the
pitfalls of false accuracy!

Certain materials permit the reasonably free passage of electric charge and
are termed conductors, while others oppose such a free passage and are
termed insulators. These abilities are simply taken relative to one another
and depend on the material considered. However, other factors also have to
be taken into account.

Consider a conductor made of a wire which has a resistance of 1 Q for
every 10 cm of its length. If the wire is made 20 cm long then effectively
there are two sections each of 10 cm connected in series. This being the case,
the resistance will be 2 Q. This form of argument may be continued so that
30 cm of wire will have a resistance of 3 € and so on, resulting in the
length/resistance characteristic shown in Fig. 3.38. Since the graph has the
form of a straight line, then the resistance is proportional to the length of
wire, i.e.

Recl [3.14]

A cable consists of two conductors which, for the purposes of a test,
are connected together at one end of the cable. The combined loop
resistance measured from the other end is found to be 100 2 when
the cable is 700 m long. Calculate the resistance of 8 km of similar
cable.

R/
R _L
RZ 12
R 1
R2=1_[2=w=1143g

1, 700
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Fig. 3.39 Area/resistance
characteristic of a conductor

Again considering 10 cm pieces of conductor of resistance 1€, if
two such pieces are connected in parallel then the resistance is 0.5 Q.
Equally if three such pieces are connected in parallel, the total resistance
is 0.33 Q, and so on. The addition of each piece of wire increases the
area of conductor available to the passage of current and hence the area/
resistance characteristic of Fig. 3.39 is obtained. The form of this charac-
teristic is such that the resistance is inversely proportional to the area
available, i.e.

Roc— 3.15
y [3.15]

A conductor of 0.5 mm diameter wire has a resistance of 300 Q.
Find the resistance of the same length of wire if its diameter were
doubled.

Rl

A
R A,
R, A 4}
300 1.0°
R 05
R,=75Q

Combining relations [3.14] and [3.15] we get

Rl
A

Rather than deal in proportionality, it is better to insert a constant into this
relation, thereby taking into account the type of material being used. This
constant is termed the resistivity of the material.

Resistivity is measured in ohm metres and is given the symbol p (p is the
Greek letter rho)

/
R=p— 3.16
P [3.16]
Resistivity Symbol: p Unit: ohm metre (2 m)

The value of the resistivity is that resistance of a unit cube of the material
measured between opposite faces of the cube. Typical values of resistivity are
given in Table 3.2.
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Table 3.2 Typical values of
resistivity

Temperature
coefficient of
resistance

Fig. 3.40 Variation of
resistance of copper with
temperature

Material p(Qm)at0°C
Aluminium 27 x107°
Brass 7.2 x107°
Copper 1.59x 107"
Eureka 49.00 x 107
Manganin 42.00 x 107
Carbon 6500.00 x 107
Tungsten 535%x107°
Zinc 537x10°°

A coil is wound from a 10 m length of copper wire having a cross-
sectional area of 1.0 mm?. Calculate the resistance of the coil.

I 1.59%107% x10

R = p— ==

5 o Cve

The resistance of all pure metals increases with increase of temperature,
whereas the resistance of carbon, electrolytes and insulating materials
decreases with increase of temperature. Certain alloys, such as manganin,
show practically no change of resistance for a considerable variation of tem-
perature. For a moderate range of temperature, such as 100 °C, the change
of resistance is usually proportional to the change of temperature; the ratio
of the change of resistance per degree change of temperature to the resistance
at some definite temperature, adopted as standard, is termed the temperature
coefficient of resistance and is represented by the Greek letter o.
Temperature coefficient of resistance

Symbol: Unit: reciprocal degree centigrade (/°C)

The variation of resistance of copper for a range over which copper con-
ductors are usually operated is represented by the graph in Fig. 3.40. If this
graph is extended backwards, the point of intersection with the horizontal

R
D _~
Resistance
B —
o R,
e -’ Rl
Jtas Ry
AL C E
—234.5 0 6, 6, 0

Temperature (°C)
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Table 3.3 T'ypical temperature
coefficients of resistance referred
to 0 °C

axis is found to be —234.5 °C. Hence, for a copper conductor having a resist-
ance of 1 Q at 0 °C, the change of resistance for 1 °C change of temperature
is (1/234.5) Q, namely 0.004 264 Q,

_0.004 264 [Q/°C]
1[Q]

In general, if a material having a resistance R, at ( °C, taken as the
standard temperature, has a resistance R, at 6, and R, at 6,, and if ¢ is the
temperature coefficient of resistance at 0 °C,

R =R(1+,0) and R,=R, 1+ 6,

=0.004 264/°C

(o2

& = 1+ a6, [3.17]
R, 1+ ¢y6,
In some countries the standard temperature is taken to be 20 °C, which is
roughly the average atmospheric temperature. This involves using a differ-
ent value for the temperature coefficient of resistance, e.g. the temperature
coefficient of resistance of copper at 20 °C is 0.003 92/°C. Hence, for a
material having a resistance R,, at 20 °C and temperature coefficient of
resistance @, at 20 °C, the resistance R, at temperature 6 is given by:

R, = Ry {1+ 0y (0— 20)} [3.18]

Hence if the resistance of a coil, such as a field winding of an electrical
machine, is measured at the beginning and at the end of a test, the mean tem-
perature rise of the whole coil can be calculated.

The value of & depends on the initial temperature of the conductor and
usually the values of the coefficient are given relative to 0 °C, i.e. . Typical
values of the temperature coefficient of resistance are given in Table 3.3.

Material a,(/°C) at 0 °C
Aluminium 0.003 81
Copper 0.004 28
Silver 0.004 08
Nickel 0.006 18
Tin 0.004 4
Zinc 0.003 85
Carbon —0.000 48
Manganin 0.000 02
Constantan 0
Eureka 0.000 01
Brass 0.001

A coil of copper wire has a resistance of 200 Q2 when its mean tem-
perature is 0 °C. Calculate the resistance of the coil when its mean
temperature is 80 °C.

R, = Ry(1+ &,6,) = 200(1 + 0.004 28 x 80) = 268.5 Q
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Temperature
rise

When a potential difference of 10 V is applied to a coil of copper wire
of mean temperature 20 °C, a current of 1.0 A flows in the coil. After
some time the current falls to 0.95 A yet the supply voltage remains
unaltered. Determine the mean temperature of the coil given that
the temperature coefficient of resistance of copper is 4.28 X 107/°C
referred to 0 °C.

At 20 °C
1
r=1-1 1000
I
At 6,
R="-1 530
L, 095
& _(I+ a0))

R, (1+0,6,)
10.0 _ (1+0.004 28 x 20)
10.53 (1 +0.004 28 x 6,)

whence

6,=33.4°C

Most materials that are classified as conductors have a positive temperat-
ure coefficient of resistance, i.e. their resistances increase with increase of
temperature. This would have a considerable effect on the estimate of what
happened to the lamps when connected in series, as indicated in Example 3.25,
especially when it is noted that the working temperature of a tungsten lamp
filament is 2500 °C.

At the other extreme, when the temperature falls to absolute zero, 0 K,
(=273 °C), the resistance falls to zero and there will be no I*R losses.
Conductors close to these conditions are known as superconductors.

Some alloys are made with a zero temperature coefficient of resistance,
thus their resistance does not vary with temperature. This is convenient in
the manufacture of measuring instruments which may thus operate effect-
ively without reference to temperature correction in their indications.

Some materials such as carbon have a negative temperature coefficient of
resistance, i.e. their resistances fall with increase in temperature. This gives
rise to certain difficulties with a group of materials termed semiconductors.
The heat created in these materials, if not effectively dissipated by cooling,
causes the resistance to fall and the current to increase. This causes the rate
of heat creation to increase, the temperature to rise still further and the
resistance to continue falling. If unchecked, this process continues until
there is sufficient heat to destroy the structure of the semiconductor com-
pletely. The process is termed thermal runaway.

The maximum power which can be dissipated as heat in an electrical circuit is
limited by the maximum permissible temperature, and the latter depends upon
the nature of the insulating material employed. Materials such as paper and
cotton become brittle if their temperature is allowed to exceed about 100 °C,
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Summary of important
formulae

whereas materials such as mica and glass can withstand a much higher temperat-
ure without any injurious effect on their insulating and mechanical properties.

When an electrical device is loaded (e.g. when supplying electrical power
in the case of a generator, mechanical power in the case of a motor or acting
as an amplifier in the case of a transistor), the temperature rise of the device
is largely due to the I°R loss in the conductors; and the greater the load,
the greater is the loss and therefore the higher the temperature rise. The full
load or rated output of the device is the maximum output obtainable under
specified conditions, e.g. for a specified temperature rise after the device has
been loaded continuously for a period of minutes or hours.

The temperature of a coil can be measured by the following means:

1. A thermometer.
2. The increase of resistance of the coil.
3. Thermo-junctions embedded in the coil.

The third method enables the distribution of temperature throughout the
coil to be determined, but is only possible if the thermo-junctions are inserted
in the coil when the latter is being wound. Since the heat generated at the
centre of the coil has to flow outwards, the temperature at the centre may be
considerably higher than that at the surface.

The temperature of an electronic device, especially one incorporating a
semiconductor junction, is of paramount importance, since even a small rise
of temperature above the maximum permissible level rapidly leads to a
catastrophic breakdown.

In a series circuit:

Voltage V=1 +V,+V; (volts) [3.1]
Resistance R=R,+ R, + R; (ohms) [3.2]
In a parallel network:
Current /=171,+1,+I; (amperes) [3.5]
1 1 1 1
= [3.6]
R R R R
Effective resistance of two parallel resistors:
RR
= [3.7]
R + R,
Current division rule for two resistors:
R
[=—=2_.] [3.8]
R + R,
Energy W = I*R¢ [3.13]
Resistance R = pl/A [3.16]
Using the temperature coefficient of resistance:
ﬁ = M [3.17]

R, 1+ o6,
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Terms and concepts

Loads are series-connected when the same current flow passes through
each of them.

Loads are connected in parallel when the same potential difference is
applied to each of them.

Kirchhoff’s laws state that the sum of the currents entering a junction
is equal to the sum of the currents leaving, and the sum of the volt
drops round any loop is equal to the sum of the e.m.fs.

The most common application of Kirchhoff’s current law is to two
branches in parallel, i.e. one current in and two out (or vice versa).

The most common application of Kirchhoff’s voltage law is to a single
circuit with one source and one load.

Resistivity is a constant for a material relating its resistance to its length
and cross-sectional area.

Resistivity generally varies with change of temperature.

The temperature coefficient of resistance relates the changes of resist-
ance to change of temperature according to the initial temperature.

Temperature rise can damage insulation and hence is the basis of rating
electrical equipment.

Exercises 3

1.

Three resistors of 2 €Q, 3 Q and 5 Q are connected
in series and a current of 2 A flows through them.
Calculate the p.d. across each resistor and the total
supply voltage.

. The lamps in a set of Christmas tree lights are con-

nected in series; if there are 20 lamps and each lamp
has a resistance of 25 €, calculate the total resistance
of the set of lamps, and hence calculate the current
taken from a 230 V supply.

. Three lamps are connected in series across a 120 V

supply and take a current of 1.5 A. If the resistance of
two of the lamps is 30 € each, what is the resistance of
the third lamp?

. The field coil of a d.c. generator has a resistance of

60 Q and is supplied from a 240 V source. Given that
the current in the coil is to be limited to 2 A, calculate
the resistance of the resistor to be connected in series
with the coil.

. Given that V] is the p.d. of L. with respect to N,

calculate, for the circuit shown in Fig. A, the values of:

() Vag, (b) Vic, () Vic, (d) Fipne

. Given that }/; is the p.d. of N with respect to L., then,

for the circuit shown in Fig. B, }/; =-50 V. What are
the corresponding values of (a) Vyx, (b) Vi, () Piws
(d) Vyw, (€) Vyx?

L
IA
Vin=100V
30Q
B
70Q

N

Fig. A

. Three resistors of 6 Q, 9 Q and 15 Q are connected in

parallel to a 9 V supply. Calculate: (a) the current in
each branch of the network; (b) the supply current;
(c) the total effective resistance of the network.

. The effective resistance of two resistors connected in

parallel is 8 Q. The resistance of one of the resistors is
12 Q. Calculate: (a) the resistance of the other resistor;
(b) the effective resistance of the two resistors con-
nected in series.
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Exercises 3 continued

10.

11.

L
o—iw

Vin=—30V 150
Ix

10Q
&

50

\ B

Fig. C

. A parallel network consists of three resistors of 4 €,

8 Q and 16 Q. If the current in the 8 € resistor is 3 A,
what are the currents in the other resistors?

With respect to Fig. C, which of the following state-
ments are correct:

(a) I, is the total supply current;

®) =L+ L)+ L (o) =L+ L+ 1

d) L=L+1,+ 1

(© L=I+L+I3

With reference to Fig. C, if link 3 is removed, which
of the following statements is correct:

(@) =L+
(b) L=L+]15
(o Ii=1;
d) =1

() I,=I,+1,+1

12,

13.

14.

15.

16

17

18

Two coils having resistances of 5  and 8 Q respect-
ively are connected across a battery having an e.m.f.
of 6 V and an internal resistance of 1.5 Q. Calculate:
(a) the terminal voltage and (b) the energy in joules
dissipated in the 5Q coil if the current remains
constant for 4 min.

A coil of 12 Q resistance is in parallel with a coil of

20 Q resistance. This combination is connected in

series with a third coil of 8 Q resistance. If the whole

circuit is connected across a battery having an e.m.f. of

30 V and an internal resistance of 2 Q, calculate (a) the

terminal voltage of the battery and (b) the power in the

12 Q coil.

A coil of 20 € resistance is joined in parallel with a coil

of R Q resistance. This combination is then joined

in series with a piece of apparatus A, and the whole
circuit connected to 100 V mains. What must be the

value of R so that A shall dissipate 600 W with 10 A

passing through it?

Two circuits, A and B, are connected in parallel to

a 25V battery, which has an internal resistance

of 0.25 Q. Circuit A consists of two resistors, 6 Q

and 4 Q, connected in series. Circuit B consists of

two resistors, 10 € and 5 €, connected in series.

Determine the current flowing in, and the potential

difference across, each of the four resistors. Also, find

the power expended in the external circuit.

. A load taking 200 A is supplied by copper and
aluminium cables connected in parallel. The total
length of conductor in each cable is 200 m, and each
conductor has a cross-sectional area of 40 mm?®.
Calculate: (a) the voltage drop in the combined cables;
(b) the current carried by each cable; (c) the power
wasted in each cable. Take the resistivity of copper
and aluminium as 0.018 uQ m and 0.028 uQ m
respectively.

. A circuit, consisting of three resistances 12 Q, 18 Q
and 36 Q respectively, joined in parallel, is connected
in series with a fourth resistance. The whole is sup-
plied at 60 V and it is found that the power dissipated
in the 12 Q resistance is 36 W. Determine the value of
the fourth resistance and the total power dissipated in
the group.

. A coil consists of 2000 turns of copper wire having

a cross-sectional area of 0.8 mm’. The mean length

per turn is 80 cm and the resistivity of copper is

0.02 pQ m at normal working temperature. Calculate

the resistance of the coil and the power dissipated

when the coil is connected across a 110 V d.c. supply.
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Exercises 3 continued

19.

20.

21.

An aluminium wire 7.5 m long is connected in parallel
with a copper wire 6 m long. When a current of 5 A is
passed through the combination, it is found that the
current in the aluminium wire is 3 A. The diameter
of the aluminium wire is 1.0 mm. Determine the
diameter of the copper wire. Resistivity of copper is
0.017 p€ m; that of aluminium is 0.028 1€ m.

The field winding of a d.c. motor is connected directly
across a 440 V supply. When the winding is at the
room temperature of 17 °C, the current is 2.3 A.
After the machine has been running for some hours,
the current has fallen to 1.9 A, the voltage remain-
ing unaltered. Calculate the average temperature
throughout the winding, assuming the temperature
coefficient of resistance of copper to be 0.004 26/°C
at0 °C.

Define the term resistance—temperature coefficient.

A conductor has a resistance of R, Q at 6, °C,
and consists of copper with a resistance—temperature
coefficient o referred to 0 °C. Find an expression for
the resistance R, of the conductor at temperature 6, °C.

22,

23.

The field coil of a motor has a resistance of 250 Q
at 15 °C. By how much will the resistance increase
if the motor attains an average temperature of 45 °C
when running? Take a = 0.004 28/°C referred to
0°C.

Explain what is meant by the temperature coefficient of
resistance of a material.

A copper rod, 0.4 m long and 4.0 mm in diameter,
has a resistance of 550 u€Q at 20 °C. Calculate the
resistivity of copper at that temperature. If the rod is
drawn out into a wire having a uniform diameter of
0.8 mm, calculate the resistance of the wire when
its temperature is 60 °C. Assume the resistivity to be
unchanged and the temperature coefficient of resist-
ance of copper to be 0.004 26/°C.

A coil of insulated copper wire has a resistance of
150 € at 20 °C. When the coil is connected across a
230 V supply, the current after several hours is 1.25 A.
Calculate the average temperature throughout the coil,
assuming the temperature coefficient of resistance of

copper at 20 °C to be 0.0039/°C.



Chapter four Network Theorems

When you have studied this chapter, you should 4.1 New circuit analysis

e be familiar with the relevance of Kirchhoff’s laws to the analysis techniques 62
of networks 4.2 Kirchhoff’'s laws and

network solution 62

e be capable of analysing networks by the applications of 4.3 Mesh analysis 70
Kirchhoff’s laws 4.4 Nodal analysis 72

e be capable of analysing networks by the application of 4.5 Superposition
Mesh analysis theorem 75

¢ be capable of analysing networks by the application of Nodal analysis 4.6 Thévenin’s theorem 77

e be capable of analysing networks by the application of = ;:z;::::an;:urrent
Thévenin’s theorem 4.8 Norton’s theorem 84

¢ have an understanding of the constant-current generator 4.9 Delta-star

e be capable of analysing networks by the application of transformation 86
Norton’s theorem 4.10 Star-delta

transformation 87

e recognize star and delta connections
4.11 Maximum power

e be capable of transforming a star-connected load into a transfer 88
delta-connected load and vice versa Summary of important

e be familiar with the condition required for maximum power to be formulae 89
developed in a load Terms and concepts 89

¢ have an understanding of the significance the maximum power
condition has in practice

Many practical circuits can be understood in terms of series and parallel circuits. However, some
electrical engineering applications, especially in electronic engineering, involve networks with
large numbers of components. It would be possible to solve many of them using the techniques
introduced in Chapter 3 but these could be lengthy and time-consuming procedures. Instead, in
this chapter, we shall develop a variety of techniques such as Nodal analysis, the Superposition
theorem, Thévenin’s theorem and Norton’s theorem, which will speed up the analysis of the more
complicated networks. It is always a good idea to make life as easy as possible!

Not all loads are connected in series or in parallel. There are two other arrangements known as
star and delta. They are not so common but, because they are interchangeable, we can readily find a
solution to any network in which they appear — so long as we can transform the one into the other.

We have seen that the function of a circuit is to deliver energy or power to a load. It may have
crossed your mind — what is the condition for the greatest power to be developed? Well, we shall
answer that later in this chapter. It is a question which is important to the electronic engineer.
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m New circuit

analysis
techniques

m Kirchhoff’s laws

and network
solution

Example 4.1

Fig. 4.1 Circuit diagram for
Example 4.1

A direct application of Kirchhoff’s current and voltage laws using the prin-
ciples discussed in Chapter 3 can solve many circuit problems. However, there
are a variety of techniques, all based on these two laws, that can simplify
circuit analysis. The main techniques, to be introduced in this chapter, are:

e Mesh analysis.

e Nodal analysis.

e Thévenin’s theorem.
e Norton’s theorem.

Each of these techniques has particular strengths aimed at solving particular
types of circuit problem. In this way, what would be laborious using one method
can be straightforward using another. Familiarization with all the different
methods will enable you to choose the method which best suits a particular
problem. This simplifies circuit solution and makes less work overall!

Kirchhoft’s laws can be applied to network solution in any of the following ways:

1. By direct application to the network in conjunction with Ohm’s law.

2. By indirect application to the network in conjunction with the manipula-
tion of the component resistances.

3. By direct application to the network resulting in solution by simultaneous
equations.

These statements appear to be most complicated, but the following series
of examples will illustrate the forms of application of the laws to network
solution. The form that ought to be most obvious is the first form, in which
the laws are directly applied; curiously this form of solution tends to be so
obvious that it is all too often neglected, as will be illustrated.

For the network shown in Fig. 4.1, determine the supply current and
the source e.m.f.

Since R; and R, are in parallel
Vi=LR,=3%x8=24V=LR;=1,X16

L=2_15a
16




CHAPTER 4 NETWORK THEOREMS 63

Example 4.2

Fig. 4.2 Circuit diagram for
Example 4.2

Example 4.3

By Kirchhoff’s first law

I=L+1,=15+3=45A
Also Vi=IR =45%x8=36V

V,=IR,=45%x6=27V
By Kirchhoff’s second law

E=V+V,+1V;=36+27+24=87V

This is not the only form of solution to the given problem. For instance,

the supply current could have been derived directly from 75 by applying the
current-sharing rule, or the source e.m.f. could have been derived from the
product of the supply current and the total effective resistance which could
have been determined — but the direct solution is readily available without

the need to resort to such devices. The following two examples illustrate
again the availability of a direct approach to network problems.

Given the network shown in Fig. 4.2, determine [}, E, I; and I.

v, 80
R,
[ 15Q
no27
=—==""=3A
R 9

Vo=LR,=3x15=45V
E=V=V+V,=27+45=T72V
]zzzzzz
R 8
I=1+=3+9=12A

9A

For the network shown in Fig. 4.3, the power dissipated in R; is 20 W.
Calculate the current I; and hence evaluate R, R;, I}, I, and V..

Potential difference across the 10 Q resistor is 1 X 10=10 V. For resistor R;,
P=20W=10x I,

Hence 13:§:2A
10

P=IR,=20
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Fig. 4.3 Circuit diagram for
Example 4.3

1
e —*
| M| -
v 5A 10 20
I I 1A
2
R R 100
o
| M|
2Q

hence 20=2"X R,
R;=5Q
L=2+1=3A

Potential difference across each of the two 2 Q resistors is 3 X2 =6 V. Thus
Vi=6+10+6=22V

L,=5-3=2A
=Bl g0
L 2

Potential difference across the 1 Q resistor is 5 X 1 =5 V, hence

V=5+22=27V

This last example in particular illustrates that a quite complicated network
can readily be analysed by this direct approach. However, it is not always
possible to proceed in this way, either because most of the information
given relates to the resistances or because there is insufficient information
concerning any one component of the network.

An instance of the information being presented mainly in terms of
resistance is given in Example 4.4 and it also brings us to the second form
of application of Kirchhoff’s laws.

For the network shown in Fig. 4.4, determine the supply current and
current /,.

In essence this network consists of three parts in series, but one of them
comprises R; and R, in parallel. These can be replaced by an equivalent
resistance, thus

_ RR, 16x8
R,+R, 16+38
Replacing R; and R, by R,, the network becomes that shown in Fig. 4.5.

Now that the network has been reduced to a simple series circuit the total
effective resistance is

R=R +R,+R.=8+6+533=19.33Q
V 87

==L —45A
R 1933

=533Q

€
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Fig. 4.4 Circuit diagram for
Example 4.4

~y
—

R,
8Q

87V I

6Q

R,
5.33Q

Fig. 4.5 Circuit diagram for
Example 4.4

Example 4.5

Fig. 4.6 Circuit diagram for
Example 4.5

87V

Reverting now to the original network,

S B 10 4s-3a
R, +R, 16 + 8

1,

This example compares with Example 4.1 and the figures are in fact
the same. However, in this second instance the given voltage and current
information stemmed from the source and not from the load, hence the
emphasis of the calculation lay in dealing with the resistances of the network.
The calculation was based on network reduction, i.e. by replacing two or
more resistors by one equivalent resistor. A further example of this approach
is given below, in which two instances of network reduction transform the
problem into a form that can be readily analysed.

Determine V3 in the network shown in Fig. 4.6.

This is quite a complex network. However, there are two instances of
parallel resistors that may be replaced by equivalent resistors. For the 10 Q
and 15 Q resistors

C10x15
T10+15

’ 1 1

12V
10Q 15Q 4Q
A B
Vag
6Q 16 Q 16 Q

@]
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Fig. 4.7 Circuit diagram for ° J. _I.
Example 4.5 12V
6Q 4Q
A B
-
I/AB
6Q 8Q

(@}

For the two 16 € resistors in parallel
_lex16
S 16+16

If these equivalent values are inserted into the network, the network trans-
forms into that shown in Fig. 4.7. Thus

6

AC

x12=6V
6

8

and Vie =

xX12=8V
8
Vis=Vic=Vpc=6-8=-2V

Having now observed the two methods of analysis being demonstrated,
you may well wonder how to tell when each should be used. As a general
rule, if the information given concerns the voltage or the current associated
with one or more components of the network, then you would apply the first
form of approach. However, if the information given concerns the supply
voltage or current, then you would try to apply the second form of approach
by network reduction. This is not always possible because resistors may be
connected in a manner that is neither series nor parallel — such an arrange-
ment is shown in Fig. 4.8.

SENIERHN  For the network shown in Fig. 4.8, calculate the currents in each of

the resistors.

Fig. 4.8 Circuit diagram for >
Example 4.6 I=5A

40V
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Fig. 4.9 Circuit diagram for
Example 4.6

Y~

40V
= oo

14(1,- 1. [ L+1,)

In this network the resistors are neither in series nor in parallel and there-
fore a more difficult method of analysis must be employed. Let the current
in the 3 Q resistor be 7, and therefore by Kirchhoff’s first law, the current in
the 28 Q resistor is 7 — I,. Further, let the current in the 8 € resistor flowing
from D to B be I,. It follows that the current in the 14 Q resistor is [, — [,
while that in the 4 Q resistor is / — I, + I,. The resulting volt drops are shown
in Fig. 4.9.

Applying Kirchhoff’s second law to loop 1 (comprising source to ADC):

40=30+14(,- 1)

40=171,- 141, (a)
Applying Kirchhoff’s second law to loop 2 (ABD):

0=28(/-1)-81,-31,

=281-311, - 81,
But I=5A
Therefore

140 =317, + 81, (b)
(a)x4 160=681, — 561, (¢
(b)yx7 980=217I, + 561, (d)

(c) +(d) 1140 =2851,
I, =4 A in 3 Q resistor
Substituting in (b),
140 =124 + 81,
I,=2 A in 8 Q resistor

Hence current in 28 Q resistor is

5-4=1A
current in 14 Q resistor is
4-2=2A

and current in 4 Q resistor is

5-4+2=3A
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Fig. 4.10 Circuit diagram for
Example 4.7

This form of solution requires that you proceed with great caution,
otherwise it is a simple matter to make mistakes during the mathematical
processes. However, in the instance given, it is necessary to involve such an
analysis; had a different current been given in this example, such a solution
would not have been required since it would then have been possible to
achieve a solution by applying the first approach, i.e. directly applying
Kirchhoff’s laws.

If two parallel e.m.f.s appear in a network as exemplified by Fig. 4.10,
it might again be necessary to employ the approach using simultaneous
equations resulting from the application of Kirchhoff’s laws.

Calculate the currents in the network shown in Fig. 4.10.

I
2
<

L+1,
10 1 18 2 20
IOV[ rov

Applying Kirchhoft’s second law to loop 1:

10=17, + 18(/, + 1)

10 =197, + 181, (a)
Applying Kirchhoff’s second law to loop 2:

20=20,+18(/,+ 1)

\ A

20 = 181, + 201, (b)
(2) x 10 100 = 1907, + 1801, (©)
(b)x9 180 = 1621, + 1801, (d)
(d)—(c) 80=-281,

I,=-2.85A

Substituting in (a)
10 =-54.34 + 181,
1,=3.57A

Current in 18 € resistor is
3.57-285=0.72A

This form of solution is fraught with the danger of mathematical mis-
takes and therefore should only be employed when all else fails. This section
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Example 4.8

Fig. 4.11 Circuit diagram for
Example 4.8

Example 4.9

R=30Q E=15V

Fig. 4.12 Circuit diagram for
Example 4.9

commenced by stating that the obvious solution is all too easily ignored.
Thus if the 2 Q resistor were removed from the network shown in Fig. 4.10,
it might be overlooked that the 20 V battery is now directly applied to the
18 Q resistor and so, knowing the voltage drop across one of the components,
it is possible to revert to the first form of analysis as shown in Example 4.8.

Calculate the currents in the network shown in Fig. 4.11.

L+ 1,

IOV[ 20V
Current in 18 Q resistor is
0. 1.1A
18
Applying Kirchhoft’s second law to the outside loop:
20-10=-7;x1
L=-10A

L=—(-10)+11=11L1A

Three similar primary cells are connected in series to form a closed
circuit as shown in Fig. 4.12. Each cell has an e.m.f. of 1.5V and an
internal resistance of 30 Q. Calculate the current and show that
points A, B and C are at the same potential.

In Fig. 4.12, E and R represent the e.m.f. and internal resistance respect-
ively of each cell.

Totalem.f.=15%x3=45V
Total resistance = 30 X 3 =90 Q

Current = ﬂ =0.05A
90

The volt drop due to the internal resistance of each cell is 0.05 x 30,
namely 1.5 V. Hence the e.m.f. of each cell is absorbed in sending the cur-
rent through the internal resistance of that cell, so that there is no difference
of potential between the two terminals of the cell. Consequently the three
junctions A, B and C are at the same potential.
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m Mesh analysis

Fig. 4.13 Circuit diagram for
Example 4.10

To summarize, therefore, the approach to network analysis should be to
determine whether component voltages and currents are known, in which
case a direct approach to the analysis may be made using the principles
observed by Kirchhoff’s laws. If this is not possible then network reduction
should be tried in order that the network is sufficiently simplified that it
becomes manageable. Should all else fail, then Kirchhoff’s laws should be
applied to derive loop simultaneous equations from which the solution will
be obtained.

This method is given a number of different names — all of which are an
indication of the analysis technique employed. It is variously known as
Maxwell’s circulating current method, loop analysis or Mesh current analysis.
The terminology is chosen to distinguish it from the familiar ‘branch current’
technique, in which currents are assigned to individual branches of a circuit.
The branch current method was first introduced in Chapter 3 and has been
used hitherto. Mesh analysis, of course, relies on Kirchhoff’s laws just the
same. The technique proceeds as follows:

+ Circulating currents are allocated to closed loops or meshes in the circuit
rather than to branches.

* An equation for each loop of the circuit is then obtained by equating
the algebraic sum of the e.m.f.s round that loop to the algebraic sum of
the potential differences (in the direction of the loop, mesh or circulating
current), as required by Kirchhoff’s voltage (second) law.

e Branch currents are found thereafter by taking the algebraic sum of the
loop currents common to individual branches.

Calculate the current in each branch of the network shown in Fig. 4.13.

200Q
300 00
[ ] I
—
60Q 50Q 10Q
20V
100V == 50V

Let the circulating loop currents be as shown in Fig. 4.14.
In loop @©:
100 — 20 = 1,(60 + 30 + 50) — 1,50 — 1530
80 =140/, — 507, — 301, (a)
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Fig. 4.14 Circuit diagram for
Example 4.10

______

In loop @:
50 + 20 = 1,(50 + 40 + 10) —7,50 — 7,40
70 = =507, + 1007, — 407, (b)
In loop @:
0= 7530 + 20 + 40) — 7,30 — 1,40
0=-307, — 407, + 907, (c)
Solving for these equations gives

I,=165A L,=216A I,=150A

Current in 60 Q =/, = 1.65 A in direction of /,
Current in 30 Q =7, — I; = 0.15 A in direction of [,
Current in 50 Q =7, — I, = 0.51 A in direction of 7,
Current in 40 Q =7, — I, =0.66 A in direction of 7,
Current in 10 Q =7, =2.16 A in direction of J,
Current in 20 Q = /;=1.50 A in direction of I;.

In Example 4.10 all the circulating loop currents have been taken in the
same direction (i.e. clockwise). This is not essential when using this method,
but if the same direction is adopted for the loop currents then the equations
will always be of the form:

Ey =Ryl — R, 1, - R13]3 e Rln[n

E,=-R, I, + Ry, — Ry I; ... — R, [

Ey=—RyI,— Ry + Rl ... — Ry, 1,
E,=—R,[,—R,,[,—R;l;...+R,I

nn-n

where E| = the algebraic sum of the e.m.f.s in loop @ in the direction of /};
E, = the algebraic sum of the e.m.f.s in loop @ in the direction of 7,,
etc.;
R,; = sum of resistances in loop @;
R,, = sum of resistances in loop @), etc.;
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m Nodal analysis

Fig. 4.15 Network for Example
4.11

R/, = total resistance common to loops @ and @,
R,; = total resistance common to loops @ and @, etc.

By their definitions R;, = R,;, R,; = Rj,, etc. Note that in the equation
derived from each loop it is only the term in the loop’s own circulating
current that is positive.

By observing these rules the equations necessary for the solution of the
circuit problem can be written down by inspection of the circuit. This can be
confirmed by examination of equations (a), (b) and (c) in Example 4.10.

This technique of circuit solution, also known as the Node Voltage method,
is based on the application of Kirchhoff’s first (current) law at each junction
(node) of the circuit, to find the node voltages. It should be noted that, in
contrast, both the branch current and Mesh current techniques of circuit
analysis are based on the applications of Kirchhoff’s second (voltage) law,
often to find unknown currents.

The Node Voltage method generally proceeds as follows:

Step 1: Choose a reference node to which all node voltages can be referred.
Label all the other nodes with (unknown) values of voltage, /5, 1, etc.

Step 2: Assign currents in each connection to each node, except the reference
node, in terms of the node voltages, 1], V5, etc.

Step 3: Apply Kirchhoff’s current law at each node, obtaining as many
equations as there are unknown node voltages.

Step 4: Solve the resulting equations to find the node voltages.

Using Nodal analysis, calculate the voltages V; and V) in the circuit
of Fig. 4.15.

Node 1 Node 2

| ] 1%
V. —_ 2
! 3.0Q
1A
5.0Q 7.0Q
J_— Reference
~ node

Refer to the four steps previously indicated:

Step 1: Reference node chosen. Voltages /] and J; assigned to the other two
nodes.
Step 2: Assign currents in each connection to each node (Fig. 4.16).
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Fig. 4.16 Part of Example 4.11

Node 1 Node 2
e 1 > v,
1A h 30Q L% n

5 3 7

1A
5.0Q 7.0Q
J_— Reference
= node

Step 3: Apply Kirchhoff’s current law to sum the currents at each node.

At node 1:

holh-r_,
5 3

which can be simplified to

MR A
5 3 3

which simplifies to
o)
Step 4: Solve node voltage equations (a) and (b).
From equation (b), by multiplying each term by 21,
TV, =Vy(7+3)=0

7V, =10V,
7
SO Vv, = EVI
From equation (a), by multiplying each term by 15,
8V, =5V,=15
Substitute for V), from equation (c), in equation (d):
351
8 ———L=15
10
) 451, =15
10
V=7V

3

(@)

(b)

(d)
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Fig. 4.17 Part of Example 4.11

Example 4.12

Fig. 4.18 Network for Example
4.12

Fig. 4.19 Part of Example 4.12

From (c)

7
V=V
3
To check the accuracy of the calculation, see for yourself if Kirchhoff’s
current law is obeyed for each node. It will be seen that the currents are as in
the circuit of Fig. 4.17.

L

Reference
node

Using the Node Voltage method calculate the voltages 7, and V), in
Fig. 4.18 and hence calculate the currents in the 8  resistor.

Node 1 Node 2
1 Vs
5.0Q 10.0 Q 12.0Q
4V 6V
15.0Q 8.0Q
— Reference
~ node

Step 1: Reference node shown. Voltages J/; and 1, assigned.
Step 2: Assign currents in each connection to each node (Fig. 4.19).

Node 1 Node 2
1 7

L

— Reference
~ node
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n Superposition

theorem

Step 3: Apply Kirchhoff’s current law at each node.
At node 1:
A-h_h-h o h
5 10 15
Multiply each term by 30:
24 -6V, =3V, =-3V,+ 21,
11V, -3V,=24 (a)
At node 2:
K=V, _Vhi=6 V.

0 12 8
Multiply each term by 120:
12V, = 12V,=10V, - 60 + 15V,
12V, = 37V, =—60 (b)

Step 4: Solve for J; and V.

12
Equation (a) X T gives:

Ly 300 _24x12 ©
11 11

Equation (c) — equation (b) gives
33.37V,=286.18

V,=2.55V
From (a)
11V, =24+3+2.55=31.65
V=288V
Hence the current in the 8 Q resistor is
% =032A

A second method of solving this problem by Nodal analysis, using source
conversion techniques, is shown in section 4.7.

The Superposition theorem states that in any network containing more than
one source, the current in, or the p.d. across, any branch can be found by
considering each source separately and adding their effects: omitted sources
of e.m.f. are replaced by resistances equal to their internal resistances.

This sounds very complicated, but is really quite simple when demon-
strated by example. Example 4.13 illustrates the manner in which Example 4.7
would be solved by means of the Superposition theorem.
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Example 4.13

Fig. 4.20 Circuit diagrams for
Example 4.13

By means of the Superposition theorem, calculate the currents in
the network shown in Fig. 4.20(a).

1Q 18Q 2Q

Because there are two sources of e.m.f. in the network, then two separate
networks need to be considered, each having one source of e.m.f. Figure
4.20(b) shows the network with the 20 V source replaced by a short-circuit,
there being zero internal resistance indicated. Also Fig. 4.20(c) shows the
network with the 10 V source similarly replaced.

For the (b) arrangement, the total resistance is

2 x18

1+ =28Q
2+18

1
thus I, = L =357A
2.8

18
2+18
also Iy +1,=3.57-321=036A

Note: the current 7, is negative due to the direction in which it has been shown.
For the (c) arrangement, the total resistance is

1x18
1+18

x3.57=-3.21A

and L, =—-

2+ =295Q

2
thus L= 20 =6.78A
2.95

and I.=- 18 X 6.78 =—6.42 A
1+18
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m Thévenin’s

theorem

Fig. 4.21 Networks to illustrate
Thévenin’s theorem

L,+1,,=678-642=036A
Thus L=1,+1,=357-642=-285A
and L=1,+1,,=-321+678=357A
also L +1,=-285+357=0.72 A

The current through a resistor R connected across any two points A and B of an
active network [i.e. a network containing one or more sources of e.m.f.] s
obtained by dividing the p.d. between A and B, with R disconnected, by (R + 1),
where r is the resistance of the network measured between points A and B with R
disconnected and the sources of e.m.f. replaced by their internal resistances.

An alternative way of stating Thévenin’s theorem is as follows: An active
network having two terminals A and B can be replaced by a constant-voltage
source having an e.m.f. E and an internal resistance r. The value of E is equal to
the open-circuit p.d. between A and B, and r is the resistance of the network
measured between A and B with the load disconnected and the sources of e.m.f.
replaced by their internal resistances.

Suppose A and B in Fig. 4.21(a) to be the two terminals of a network
consisting of resistors having resistances R, and R; and a battery having an
e.m.f. £, and an internal resistance R,. It is required to determine the
current through a load of resistance R connected across AB. With the load
disconnected as in Fig. 4.21(b),

E
Current through R; = !
R+ R,
ER
and PD across R; = ——
TR+ R

o B

()
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Since there is no current through R,, p.d. across AB is
_ ER
R + R,

Figure 4.21(c) shows the network with the load disconnected and the
battery replaced by its internal resistance R,. Resistance of network between

Aand Bis
R R,
R, + R,
Thévenin’s theorem merely states that the active network enclosed by the
dotted line in Fig. 4.21(a) can be replaced by the very simple circuit enclosed
by the dotted line in Fig. 4.21(d) and consisting of a source having an e.m.f.

E equal to the open-circuit potential difference }/” between A and B, and an
internal resistance 7, where J and 7 have the values determined above. Hence

E
r+R

r=R, +

Current throughR =1 =

Thévenin’s theorem — sometimes referred to as Helmholtz’s theorem — is
an application of the Superposition theorem. Thus, if a source having an
e.m.f. F equal to the open-circuit p.d. between A and B in Fig. 4.21(b) were
inserted in the circuit between R and terminal A in Fig. 4.21(a), the positive
terminal of the source being connected to A, no current would flow through
R. Hence, this source could be regarded as circulating through R a current
superimposed upon but opposite in direction to the current through R due
to E, alone. Since the resultant current is zero, it follows that a source of
e.m.f. E connected in series with R and the equivalent resistance r of the
network, as in Fig. 4.21(d), would circulate a current / having the same value
as that through R in Fig. 4.21(a), but in order that the direction of the
current through R may be from A towards B, the polarity of the source must

be as shown in Fig. 4.21(d).

In Fig. 4.22(a) C and D represent the two terminals of an active net-
work. Calculate the current through R;.
With R; disconnected, as in Fig. 4.22(b),
6 -4
I, =——=04A

2+3
and p.d. across CD is E; — I, R;,
Le. E=6-(04x2)=52V

When the e.m.f.s are removed, as in Fig. 4.22(c), total resistance between
Cand D is
2x3
743
Hence the network AB in Fig. 4.22(a) can be replaced by a single source

having an e.m.f. of 5.2V and an internal resistance of 1.2 Q) as in
Fig. 4.22(d); consequently

ie. r=12Q
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Fig. 4.22 Circuit diagrams for c 4l c
Example 4.14 I ” °
e B X 5= T B
T ov At v v
A B R;=
Ry = Ry= 10Q R = Ry=
2Q 3Q 2Q 3Q
D o D
(a) (b)
o C
LI]RI Ij]Rz |
2Q 3Q
o D
(©)
5.2
=———=0.46A
1.2 +10

D ENERER  The resistances of the various arms of a bridge are given in Fig. 4.23.
The battery has an e.m.f. of 2.0 V and a negligible internal resist-
ance. Determine the value and direction of the current in BD, using:

(a) Kirchhoff’s laws;
(b) Thévenin’s theorem.

(a) By Kirchhoff’s laws. Let I, I, and I, be the currents in arms AB, AD
and BD respectively, as shown in Fig. 4.23. Then by Kirchhoft’s first law,

Currentin BC=1, - [;
and Currentin DC=1,+ [5

Fig. 4.23 Network for
Example 4.15
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Fig. 4.24 Diagrams for solution
of Example 4.15 by Thévenin’s
theorem

Applying Kirchhoff’s second law to the mesh formed by ABC and the
battery, we have

2 =101, + 30, - I)

=401, - 301, (2)
Similarly for mesh ABDA,
0=107, +407; - 201, (b)

and for mesh BDCB,
0=407;+ 15(1, + I;)) — 30(L, — I5)
=-301, + 157, + 851, (c)

Multiplying (b) by 3 and (c) by 4, and adding the two expressions thus
obtained, we have

0=-907, + 4601,

I,=51111,
Substituting for /; in (a), we have

,=0.0115A=11.5mA

Since the value of 7; is positive, the direction of /; is that assumed in
Fig. 4.23, namely from B and D.

(b) By Thévenin’s theorem. Since we require to find the current in the
40 Q resistor between B and D, the first step is to remove this resistor, as in
Fig. 4.24(a). Then p.d. between A and B is

2 X 10 =05V
10 + 30
and p.d. between A and D is
20 =1.143V
20 +15

therefore p.d. between B and D is
1.143-0.5=0.643 V

10Q 30Q

20Q 15Q

(@) (b) ©
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m The constant-

current
generator

Fig. 4.25 FEnergy source
feeding load

B being positive relative to D. Consequently, current in the 40 Q resistor,
when connected between B and D, will flow from B to D.

The next step is to replace the battery by a resistance equal to its internal
resistance. Since the latter is negligible in this problem, junctions A and C
can be short-circuited as in Fig. 4.24(b). Equivalent resistance of BA and
BCis

10 x 30 _750
10 + 30
and equivalent resistance of AD and CD is
20 x 15 ~8570
20 +15

therefore total resistance of network between B and D = 16.07 Q2. Hence the
network of Fig. 4.24(a) is equivalent to a source having an e.m.f. of 0.643 V
and an internal resistance of 16.07 Q as in Fig. 4.24(c).

0.643

Current through BD = —— = 0.0115A
16.07 + 40

=11.5mA from Bto D

It was shown in section 4.6 that a source of electrical energy could be repres-
ented by a source of e.m.f. in series with a resistance. This is not, however, the
only form of representation. Consider such a source feeding a load resistor
R; as shown in Fig. 4.25.
From this circuit:
E 5

TR TR Rk
R
L =—5 I [4.1]
R +R.

where I, = E/R, is the current which would flow in a short-circuit across the
output terminals of the source.

It can be seen from relation [4.1] that, when viewed from the load, the
source appears as a source of current (/) which is dividing between the
internal resistance (R,) and the load resistor (R;) connected in parallel.
For the solution of problems, either form of representation can be used. In
many practical cases an easier solution is obtained using the current form.
Figure 4.26 illustrates the equivalence of the two forms.

The resistance of the constant-current generator must be taken as infinite,
since the resistance of the complete source must be R, as is obtained with the
constant-voltage form.

The ideal constant-voltage generator would be one with zero internal
resistance so that it would supply the same voltage to all loads. Conversely,
the ideal constant-current generator would be one with infinite internal
resistance so that it supplied the same current to all loads. These ideal con-
ditions can be approached quite closely in practice.
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Fig. 4.26 Equivalence of
constant-voltage generator and
constant-current generator forms
of representation

Example 4.16

Example 4.17

R Constant-
current

generator

Constant-voltage
generator

Represent the network shown in Fig. 4.27 by one source of e.m.f. in
series with a resistance.

Potential difference across output terminals is
Vo=1x15=15V
Resistance looking into output terminals is
5+15=20Q

therefore the circuit can be represented as shown in Fig. 4.28.

g I o N

5Q 5Q
1A
15Q

Fig. 4.27 Network for
Example 4.15

20Q

A

Fig. 4.28 Part of Example 4.14

The Node Voltage technique (Nodal analysis) lends itself to circuit
models having current instead of voltage sources. To illustrate the
technique, we will convert all the voltage sources of Fig. 4.18 to
current sources and replace them in the circuit of Fig. 4.29. This
produces Fig. 4.30 to which we apply the rules of Nodal analysis.

At node 1:

08:ﬁ+ﬁ+V‘_V2
S5 15 10
5 15 10 10

Multiply by 30:
24=V(6+2+3)-3V,
24=11V,-3V, (a)
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Fig. 4.29 Source conversions 1 1
for Example 4.17 L1
50Q
4V 0.8A
[ jp— becomes T @ 50Q
L . .
v, v,
— 1+
120 Q
6V 0.5A
e I becomes 120Q T
r————————— P
Fig. 4.30 New circuit for Node 1 Node 2
Example 4.17 A — oo
0.8 A v, v, 100Q V=V, v, v, 0.5A
5 15 0 3 2
0.8A 0.5A
] 50Q 15.0Q 8.0Q 12.0Q [
J__ Reference
= node
At node 2:
o5="2 V2 (K=
' 8 12 10
0.5:_—V1+Vz l+l+i
10 8§ 10 12
Multiply by 120:
60 =-121,+ V,(15+ 12+ 10)
60 =—-12V,+ 37V, (b)
12
(a) x ﬁ 26.8 =121, —3.273V, (c)
©+@®b)  86.8=233.727V,

V,=2.55V
Hence the current in the 8 Q resistor (/,/8) = 0.32 A as before.
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7

ﬂ :‘I?;::': When a branch in a circuit is open-circuited the remainder of the circuit can
be represented by one source of e.m.f. in series with a resistor; it follows from
what has been said in section 4.7 that it could equally well be represented by
a source of current in parallel with the same resistor. Norton’s theorem is
therefore a restatement of Thévenin’s theorem using an equivalent current-
generator source instead of the equivalent voltage-generator source. It can
therefore be stated that:

The current which flows in any branch of a network is the same as that
which would flow in the branch if it were connected across a source
of electrical energy, the short-circuit current of which is equal to the
current that would flow in a short-circuit across the branch, and the
internal resistance of which is equal to the resistance which appears
across the open-circuited branch terminals.

Norton’s theorem is illustrated in Fig. 4.31.

Fig. 4.31 Norton’s theorem

Circuit with any
number of sources
and resistors

SEN IR EN  Calculate the potential difference across the 2.0 Q resistor in the

network shown in Fig. 4.32.

Short-circuiting the branch containing the 2.0 Q resistor gives the net-
work shown in Fig. 4.33.

Fig. 4.32 Network for

Example 4.18
20V
Fig. 4.33 Part of Example 4.18 I — — 1
4.0Q 8.0Q
10V 20V
— " Ig —
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Fig. 4.34 Part of Example 4.18

Example 4.19

Fig. 4.35 Network for
Example 4.19

Y~

o I

1
0=401, -~ I,=-2_25A
4.0
2
20=801, - L=22-254
8.0

L=I+1,=50A

Resistance across open-circuited branch is

4.0 x 8.0 2670
4.0+ 8.0
therefore the circuit reduces to that shown in Fig. 4.34.
= _ 267 x50=1.06A
2.67 +10.0

V=106x20=21V

Calculate the current in the 5.0 Q resistor in the network shown in
Fig. 4.35.

Short-circuiting the branch containing the 5.0 Q resistor gives the circuit
shown in Fig. 4.36. Since the branch containing the 4 Q and 6 Q is short-
circuited, we can ignore it, thus the source current is divided between the
8 Q branch and the short-circuit branch which still has the 2 Q resistance in
series with the short circuit.

8.0

=——— x10=8.0A
8.0 +2.0

g - [ -
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Fig. 4.36 Part of Example 4.19

SR

]S‘OQ

Fig. 4.37 Part of Example 4.19

m Delta—star

transformation

Fig. 4.38 Delta—star
transformation

ST

When obtaining the equivalent source resistance seen from the terminal
of the open-circuit (i.e. when the 5.0 Q has been removed) the current
generator is replaced by an open-circuit, hence the resistance looking into
the output terminals is

(2.0 +8.0)6.0 +4.0) 10x10
(2.0 + 8.0) + (6.0 + 4.0) 20
therefore the circuit reduces to that shown in Fig. 4.37.

50
C50+5.0

=5.0Q

x8.0=40A

Figure 4.38(a) shows three resistors R;, R, and R; connected in a closed mesh
or delta to three terminals A, B and C, their numerical subscripts 1, 2 and 3
being opposite to the terminals A, B and C respectively. It is possible to replace
these delta-connected resistors by three resistors R,, R, and R, connected
respectively between the same terminals A, B and C and a common point S,
as in Fig. 4.38(b). Such an arrangement is said to be star-connected. It will be
noted that the letter subscripts are now those of the terminals to which the
respective resistors are connected. If the star-connected network is to be
equivalent to the delta-connected network, the resistance between any two
terminals in Fig. 4.38(b) must be the same as that between the same two
terminals in Fig. 4.38(a). Thus, if we consider terminals A and B in
Fig. 4.38(a), we have a circuit having a resistance R; in parallel with a circuit
having resistances R, and R, in series; hence

R;(R, + R
= 3( 1 2) [42]
R +R + R
A
A
PE——
L3 R LA
C B

R
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Star—delta
transformation

For Fig. 4.38(b), we have
R,z =R, + R, [4.3]

In order that the networks of Fig. 4.38(a) and (b) may be equivalent to each
other, the values of R,; represented by expressions [4.2] and [4.3] must be equal.

R+ Ry = DR+ BBy [4.4]
R + R, + R,
Similarly
R, +R = DRt RE [4.5]
R +R,+ R,
RR, + R,R
and R +R. = e i (4.6]
R +R + R
Subtracting equation [4.5] from [4.6], we have
R -R = BB — RB, [4.7]
R + R, + R,
Adding equations [4.6] and [4.7] and dividing by 2, we have
RR
R=—"2"— [4.8]
R + R, + R,
Similarly
R:R
= [4.9]
R +R, + R,
RR
and =12 [4.10]
R + R, + R,

These relationships may be expressed thus: the equivalent star resistance
connected to a given terminal is equal to the product of the two delta resistances
conmected to the same terminal divided by the sum of the delta resistances.

Let us next consider how to replace the star-connected network of
Fig. 4.38(b) by the equivalent delta-connected network of Fig. 4.38(a).
Dividing equation [4.8] by equation [4.9], we have

Ra _RZ
R, R

RR
R2= 1%

Ry,
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Maximum
power transfer

Fig. 4.39

Load

Source

Resistance matching

Similarly, dividing equation [4.8] by equation [4.10], we have

Ra _R3

R. R
RR

Ry=—"2
R

C

Substituting for R, and R; in equation [4.8], we have

R,R

R1=Rb +RC+THC [411]
Similarly
R2=RC+RA+% [4.12]
R,
and
R
&=&+&+&b [4.13]

®

These relationships may be expressed thus: the equivalent delta resistance be-
tween two terminals is the sum of the two star resistances conmected to those terminals
plus the product of the same two star resistances divided by the third star resistance.

Let us consider a source, such as a battery or a d.c. generator, having
an e.m.f. £ and an internal resistance r, as shown enclosed by the dotted
rectangle in Fig. 4.39. A variable resistor is connected across terminals A
and B of the source. If the value of the load resistance is R, then

E
r+R

and power transferred to load is
E*R E’R
I’R =

C (+R? P2 +2rR+ R

EZ
‘R=———— [4.14]
(**/R) +2r + R

This power is a maximum when the denominator of [4.14] is a minimum, i.e.

when
2
i r—+27+R =0
dR
2
r
——2+1=0
or R=r [4.15]
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Summary of important
formulae

Terms and concepts

To check that this condition gives the minimum and not the maximum
value of the denominator in expression [4.14], expression {—(+R?) + 1}
should be differentiated with respect to R, thus

d 2
-t =R
dR R?

Since this quantity is positive, expression [4.15] is the condition for the
denominator of equation [4.14] to be a minimum and therefore the output
power to be a maximum. Hence the power transferred from the source to the
load is a maximum when the resistance of the load is equal to the internal
resistance of the source. This condition is referred to as resistance matching.

Resistance matching is of importance in communications and electronic
circuits where the source usually has a relatively high resistance and where
it is desired to transfer the largest possible amount of power from the source
to the load. In the case of power sources such as generators and batteries,
the internal resistance is so low that it is impossible to satisfy the above
condition without overloading the source.

For delta—star transformation

RR
S B [4.8]
R +R + R

For star—delta transformation

RI:Rb+Rc+% [4.11]
R,

For maximum power transfer

R=r [4.15]

Most circuit problems can be solved by applying Kirchhoff’s laws to pro-
duce simultaneous equations; the solution of these equations is often
unnecessarily difficult.

In Mesh analysis, circulating currents are allocated to closed loops or
meshes in the circuit rather than to branches.

Nodal analysis is based on the application of Kirchhoff’s first (current)
law at each junction (node) of a circuit, to find the node voltages.

The Superposition theorem states that we can solve a circuit problem
one source at a time, finally imposing the analyses one on another.

Thévenin’s theorem states that any network supplying a load can be re-
placed by a constant-voltage source in series with an internal resistance.

Norton’s theorem states that any network supplying a load can be re-
placed by a constant-current source in parallel with an internal resistance.

The delta—star transformation permits us to replace any three loads
connected in delta by an equivalent three loads connected in star.
The star—delta transformation permits the converse transfer.

The maximum—power transfer theorem states that maximum power
is dissipated by a load when its resistance is equal to the equivalent
internal resistance of the source.
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Exercises 4

1.

State Kirchhoft’s laws and apply them to the solution
of the following problem.

Two batteries, A and B, are connected in parallel,
and an 80 Q resistor is connected across the battery
terminals. The e.m.f. and the internal resistance of
battery A are 100 V and 5 Q respectively, and the
corresponding values for battery B are 95V and 3 Q
respectively. Find (a) the value and direction of the
current in each battery and (b) the terminal voltage.

. State Kirchhoft’s laws for an electric circuit, giving an

algebraic expression for each law.

A network of resistors has a pair of input terminals
AB connected to a d.c. supply and a pair of output
terminals CD connected to a load resistor of 120 €.
The resistances of the network are AC=BD =180 Q,
and AD = BC = 80 Q. Find the ratio of the current in
the load resistor to that taken from the supply.

. State Kirchhoft’s laws as applied to an electrical circuit.

A secondary cell having an e.m.f. of 2V and an
internal resistance of 1 Q is connected in series with a
primary cell having an e.m.f. of 1.5 V and an internal
resistance of 100 €, the negative terminal of each cell
being connected to the positive terminal of the other cell.
A voltmeter having a resistance of 50 € is connected
to measure the terminal voltage of the cells. Calculate
the voltmeter reading and the current in each cell.

. State and explain Kirchhoff’s laws relating to electric

circuits. T'wo storage batteries, A and B, are connected
in parallel for charging from a d.c. source having an
open-circuit voltage of 14 V and an internal resistance of
0.15 Q. The open-circuit voltage of A is 11 V and that of
Bis 11.5 V; the internal resistances are .06 €2 and 0.05
respectively. Calculate the initial charging currents.

What precautions are necessary when charging
batteries in parallel?

. State Kirchhoft’s laws as applied to an electrical circuit.

Two batteries A and B are joined in parallel.
Connected across the battery terminals is a circuit con-
sisting of a battery C in series with a 25 Q resistor, the
negative terminal of C being connected to the positive
terminals of A and B. Battery A has an e.m.f. of 108 V
and an internal resistance of 3 €, and the corresponding
values for battery B are 120 V and 2 Q. Battery C has
an e.m.f. of 30 V and a negligible internal resistance.
Determine (a) the value and direction of the current in
cach battery and (b) the terminal voltage of battery A.

. A network is arranged as shown in Fig. A. Calculate

the value of the current in the 8 Q resistor by (a) the
Superposition theorem, (b) Kirchhoff’s laws, (c)
Thévenin’s theorem and (d) Nodal analysis.

10.

11.

12,

50 10Q 12Q
B 1
::l::w 15Q 8Q %ev

Fig. A

. Find the voltage across the 4 Q resistor in Fig. B.

using (a) Nodal analysis, (b) the Superposition theorem
and (c) Thévenin’s theorem.

| — |
| S |

T
L

Fig. B

. A network is arranged as in Fig. C. Calculate the equi-

valent resistance between (a) A and B, and (b) A and N.

A
N\

Fig. C

. A network is arranged as in Fig. D, and a battery

having an e.m.f. of 2 V and negligible internal resist-
ance is connected across AC. Determine the value and
direction of the current in branch BE.

Calculate the value of the current through the 40 Q
resistor in Fig. E.

Using Thévenin’s theorem, calculate the current
through the 10 Q resistor in Fig. F.

A certain generator has an open-circuit voltage of 12 'V
and an internal resistance of 40 Q. Calculate: (a) the
load resistance for maximum power transfer; (b) the
corresponding values of the terminal voltage and of
the power supplied to the load.
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921

Exercises 4 continued

13.

14.

B

Fig. E

If the load resistance were increased to twice the

value for maximum power transfer, what would be the
power absorbed by the load?
A battery having an e.m.f. of 105V and an internal
resistance of 1 Q is connected in parallel with a d.c.
generator of e.m.f. 110 V and internal resistance of
0.5 Q to supply a load having a resistance of 8 Q.
Calculate: (a) the currents in the battery, the generator
and the load; (b) the potential difference across the load.
State your own interpretation of Thévenin’s theorem
and use it to solve the following problem.

Two batteries are connected in parallel. The e.m.f.
and internal resistance of one battery are 120 V and

15.

16.

17.

18.

19.

10 Q respectively and the corresponding values for the
other are 150 V and 20 Q. A resistor of 50 Q is con-
nected across the battery terminals. Calculate (a) the
current through the 50 Q resistor, and (b) the value
and direction of the current through each battery. If
the 50 Q resistor were reduced to 20 € resistance, find
the new current through it.

Three resistors having resistances 50 €2, 100 Q and
150 Q are star-connected to terminals A, B and C
respectively. Calculate the resistances of equivalent
delta-connected resistors.

Three resistors having resistance 20 €2, 80 Q and 30 Q
are delta-connected between terminals AB, BC and CA
respectively. Calculate the resistances of equivalent
star-connected resistors.

With the aid of delta and star connection diagrams,
state the basic equations from which the delta—star and
star—delta conversion equations can be derived.

A star network, in which N is the star point, is
made up as follows: A-N =70 Q; B-N =100 € and
C-N = 90 Q. Find the equivalent delta network. If
the above star and delta networks were superimposed,
what would be the measured resistance between
terminals A and C?

Calculate the current in the 10 Q resistor in the
network shown in Fig. G.

For the network shown in Fig. H, calculate the
potential difference V. Calculate the resistance of
a resistor connected across NO that would draw a
current of 1.0 A.

Fig. G
v 10e
——
30V \\ IO/, 20V N 200Q
\¥ v/
200
|
Fig. H
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When you have studied this chapter, you should 5.1 Capacitors 93
o be familiar with the capacitor and its ability to store 5.2 Hydraulic analogy 94
electrical charge 5.3 Charge and voltage 95

5.4 Capacitance 95

5.5 Capacitors in parallel 96

5.6 Capacitors in series 96

5.7 Distribution of voltage across capacitors in series 97
5.8 Capacitance and the capacitor 98

e have an understanding of the relation between
voltage and charge

e be capable of analysing series- and
parallel-connected capacitors

¢ have an understanding of an electric field and be 5.9 Electric fields 99
capable of drawing a simple electric field 5.10 Electric field strength and electric flux density 99
e be familiar with the units of measurement within an 5.11 Relative permittivity 101
electric field 5.12 Capacitance of a multi-plate capacitor 102
* be capable of analysing simple electric fields 5.13 Composite-dielectric capacitors 103
¢ have an understanding of the construction of a 5.14 Charging and discharging currents 106
multi-plate capacitor and be capable of analysing its 5.15 Growth and decay 107
capacitance 5.16 Analysis of growth and decay 109
 have an understanding of the charging and 5.17 Discharge of a capacitor through a resistor 112

5.18 Transients in CR networks 114

5.19 Energy stored in a charged capacitor 119

5.20 Force of attraction between oppositely charged plates
120

discharging processes which occur in circuits
containing capacitors
e be capable of analysing such growth and decay

e recognize the transient response of a CR circuit 5.21 Dielectric strength 121

* have an understanding of the energy stored in a 5.22 Leakage and conduction currents in capacitors 122
capacitor and be capable of analysing the stored 5.23 Displacement current in a dielectric 123
energy 5.24 Types of capacitor and capacitance 123

e be familiar with common types of capacitor and be Summary of important formulae 126
able to cite examples of each Terms and concepts 127

A capacitor is a device which can store electric charge for short periods of time. Like resistors, capacitors can
be connected in series and in parallel and therefore we can analyse them after the fashion which we have
developed in previous chapters.

We know that a resistor makes the passage of electric charge difficult, hence the production of heat, but
otherwise we do not bother too much about what happens in the resistor. However, the effect of storing
charge in a capacitor has much more significance not only within the capacitor but also in the space
surrounding it. The effect in such space is termed the electric field and this requires that we investigate it
some detail.

If we wished to fill a container with water, we know that it takes time to pour in that water. In much the
same way, it takes time to pour charge into a capacitor and again this speed of action is something with
which we need to become familiar since it has a great deal of influence on the application of capacitors.

Capacitors are widely used in all branches of electrical engineering and the effect of capacitance is to be
found wherever there is an electric circuit. We shall find that capacitors are one of the three main
components in any electrical system.
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m Capacitors

Fig. 5.1 Paper-insulated
capacitor

. International
™ symbol

Alternative

symbol found
T in old diagrams —

no longer used

Fig. 5.2 Circuit symbols for a
capacitor

Fig. 5.3 Capacitor charged and
discharged through a resistor

In Chapter 2 we considered the presence of electric charge. The next step
requires that we introduce a device which can hold a reasonable amount of
charge. Such a device is called a capacitor, although some people still use the
old term condenser.

Early experimenters found that conductors would hold much greater
electric charges provided that they were held in close proximity to one
another yet kept apart. They also found that the greater the surface area of
the conductors then the greater the stored charge.

A simple capacitor can be made from two strips of metal foil sandwiched
with two thin layers of insulation. Waxed paper is a suitable insulant; the wax
is needed to keep damp out of the paper which otherwise would quickly
cease being an insulator. The foil and paper are rolled as shown in Fig. 5.1.
Thus we have a device bringing two conductors of large area into very close
proximity with one another yet which are insulated, and this would provide
a practical capacitor which can be used to hold electric charge.

A capacitor’s ability to hold electric charge is measured in farads. This
is a very large unit and most capacitors are rated in microfarads or less. In
circuit diagrams there are two common symbols for a capacitor as shown in
Fig. 5.2. In subsequent diagrams the international symbol will be used.

A charged capacitor may be regarded as a reservoir of electricity and its
action can be demonstrated by connecting a capacitor of, say, 20 yF in series
with a resistor R, a centre-zero microammeter A and a two-way switch S, as
in Fig. 5.3. A voltmeter V is connected across C. If R has a resistance of, say,
1 MQ, it is found that when switch S is closed on position a, the ammeter A
shows a deflection rising immediately to its maximum value and then falling
off to zero. This means that initially there has been a significant current due
to the inrush of electric charge into the uncharged capacitor, subsequently
reducing to zero once the capacitor was fully charged. This change of current
is indicated by curve G in Fig. 5.4.

At the same time the voltmeter indicates a rise in voltage across the
capacitor C. This rise of voltage is indicated by curve M.

When the switch S is moved over to position b, the ammeter again
performs as before except that the indication is in the reverse direction.
The reverse deflection is due to the charge rushing out from the capacitor.
The current is indicated by curve H.

At the same time the voltmeter indicates a fall in voltage across the
capacitor C. This fall in voltage is indicated by curve N.

If the experiment is repeated with a resistance of, say, 2 M€, it is found
that the initial current, both on charging and on discharging, is halved, but

o —
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Fig. 5.4 Charging and
discharging currents and p.d.s

E Hydraulic

analogy
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Fig. 5.5 Hydraulic analogy of a
capacitor
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it takes about twice as long to rise up and to fall off, as shown by the dotted
curves J and K. Curves P and Q represent the corresponding variation of
the p.d. across C during charge and discharge respectively.

The shaded area between curve G and the horizontal axis in Fig. 5.4
represents the product of the charging current (in amperes) and the time (in
seconds), namely the quantity of electricity (in coulombs) required to charge
the capacitor to a p.d. of J/volts. Similarly the shaded area enclosed by curve
H represents the same quantity of electricity obtainable during discharge.

The operation of charging and discharging a capacitor may be more easily
understood if we consider the hydraulic analogy given in Fig. 5.5, where P
represents a piston operated by a rod R and D is a rubber diaphragm
stretched across a cylindrical chamber C. The cylinders are connected by
pipes E and are filled with water.

When no force is being exerted on P, the diaphragm is flat, as shown dotted,
and the piston is in position A. If P is pushed towards the left, water is with-
drawn from G and forced into F and the diaphragm is in consequence dis-
tended, as shown by the full line. The greater the force applied to P, the greater
is the amount of water displaced. But the rate at which this displacement takes
place depends upon the resistance offered by pipes E; thus the smaller the
cross-sectional area of the pipes the longer is the time required for the steady
state to be reached. The force applied to P is analogous to the e.m.f. of the
battery, the quantity of water displaced corresponds to the charge, the rate at
which the water passes any point in the pipes corresponds to the current and
the cylinder C with its elastic diaphragm is the analogue of the capacitor.

When the force exerted on P is removed, the distended diaphragm forces
water out of F back into G; and if the frictional resistance of the water in the
pipes exceeds a certain value, it is found that the piston is merely pushed
back to its original position A. The strain energy stored in the diaphragm due
to its distension is converted into heat by the frictional resistance. The effect
is similar to the discharge of the capacitor through a resistor.

No water can pass from F to G through the diaphragm so long as it
remains intact; but if it is strained excessively it bursts, just as the insulation
in a capacitor is punctured when the p.d. across it becomes excessive.
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a Charge and

voltage The experiment described in section 5.1 shows that charge is transferred but
it is unsuitable for accurate measurement of the charge. A suitable method is
to discharge the capacitor through a ballistic galvanometer G, since the
deflection of the latter is proportional to the charge.

Let us charge a capacitor C (Fig. 5.6) to various voltages by means of a
slider on a resistor R connected across a battery B, S being at position a; and
for each voltage, note the deflection of G when C is discharged through it by
moving S over to position b. Thus, if 6 is the first deflection or ‘throw’
observed when the capacitor, charged to a p.d. of V" volts, is discharged
through G, and if £ is the ballistic constant of G in coulombs per unit of first
deflection, then discharge through G is

0O = k0 coulombs

It is found that, for a given capacitor,

Charge on C [coulombs
g [ 1 = a constant [5.1]
PD across C [volts]
Fig. 5.6 Measurement of a b
charge by ballistic galvanometer \ S°

ﬂ Capacitance

The property of a capacitor to store an electric charge when its plates are at
different potentials is referred to as its capacitance.

The unit of capacitance is termed the farad (abbreviation F) which
may be defined as the capacitance of a capacitor between the plates of which
there appears a potential difference of 1 volt when it is charged by I coulomb of
electricity.

Capacitance Symbol: C Unit: farad (F)
It follows from expression [5.1] and from the definition of the farad that

Charge [coulombs]
Applied p.d. [volts]

= capacitance [farads]

or in symbols

=_C
14

0=CV  coulombs [5.2]
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a Capacitors in

parallel

Fig. 5.7 Capacitors in parallel

a Capacitors in

series

In practice, the farad is found to be inconveniently large and the capacit-
ance 1s usually expressed in microfarads (UF) or in picofarads (pF), where

1uF=10"F
and 1pF=10"F

A capacitor having a capacitance of 80 yF is connected across a 500 V
d.c. supply. Calculate the charge.

From equation [5.2],

0=CV
Charge = (80 x 10™°) [F] x 500 [V]
=0.04 C=40 mC

Suppose two capacitors, having capacitances C; and C, farads respectively,
to be connected in parallel (Fig. 5.7) across a p.d. of J" volts. The charge on
C, is O, coulombs and that on C, is Q, coulombs, where

0,=CV and 0,=GCV

If we were to replace C,; and C, by a single capacitor of such capacitance C
farads that the same total charge of (Q; + Q,) coulombs would be produced
by the same p.d., then O, + Q,=CV".

Substituting for Q, and Q,, we have

CV+GlV=Cr
C=C,+C, farads [5.3]

Hence the resultant capacitance of capacitors in parallel is the arithmetic sum of
their respective capacitances.

Suppose C, and G, in Fig. 5.8 to be two capacitors connected in series with
suitable centre-zero ammeters A; and A,, a resistor R and a two-way switch
S. When S is put over to position a, A, and A, are found to indicate exactly
the same charging current, each reading decreasing simultaneously from a
maximum to zero, as already shown in Fig. 5.4. Similarly, when S is put over
to position b, A, and A, indicate similar discharges. It follows that during
charge the displacement of electrons from the positive plate of C,; to the
negative plate of C, is exactly the same as that from the upper plate (Fig. 5.8)
of G, to the lower plate of C,. In other words the displacement of Q coulombs
of electricity is the same in every part of the circuit, and the charge on each
capacitor is therefore Q coulombs.

If 7} and V are the corresponding p.d.s across C, and C, respectively,
then from equation [5.2]:

0=CV, =G,

so that
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Fig. 5.8 Capacitors in series

Distribution of
voltage across
capacitors in series

Q
1 Cl and 2 Cz [5 4]

If we were to replace C, and C, by a single capacitor of capacitance C
farads such that it would have the same charge Q coulombs with the same
p.d. of V' volts, then

Q

=CV V==
0o or C

But it is evident from Fig. 5.8 that /"= J/; + V/,. Substituting for V| V; and
V,, we have

20_0 0
c ¢ G
111 [5.5]
e @

Hence the reciprocal of the resultant capacitance of capacitors connected in series
1s the sum of the reciprocals of their respective capacitances.

From expression [5.4]

L3 = S [5.6]
h G
But n+v,=r
V,=V-r
Substituting for V/ in equation [5.6], we have
V- _G

" G

Vi=V x G [5.7]
C +C,

and

G
(i ar €5

=X [5.8]

Three capacitors have capacitances of 2, 4 and 8 uF respectively.
Find the total capacitance when they are connected

(a) in parallel;

(b) in series.
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a Capacitance and

the capacitor

(a) From equation [5.3]:
C=C+GC+C;
Total capacitance =2 + 4 + 8§ = 14 uF

(b) If C is the resultant capacitance in microfarads when the capacitors
are in series, then from equation [5.5]:

1 1 1 1 1 1 1
—=—t—+—=—+—+—
c ¢ ¢ ¢ 2 4 8
=0.5+0.25+0.125=10.875
C=1.14 uF

If two capacitors having capacitances of 6 UF and 10 uF respectively
are connected in series across a 200 V supply, find

(a) the p.d. across each capacitor;
(b) the charge on each capacitor.

(a) Let V, and V), be the p.d.s. across the 6 uF and 10 uF capacitors
respectively; then, from expression [5.7],

10

¥, =200 x =125V
6+10

and V,=200-125=75V
(b) Charge on each capacitor
0 = charge on C,
=6x107°x 125=0.000 75 C =750 uC

It follows from expression [5.3] that if two similar capacitors are connected
in parallel, the capacitance is double that of one capacitor. But the effect
of connecting two similar capacitors in parallel is merely to double the area
of each plate. In general, we may therefore say that the capacitance of a
capacitor is proportional to the area of the plates.

On the other hand, if two similar capacitors are connected in series, it
follows from expression [5.5] that the capacitance is halved. We have,
however, doubled the thickness of the insulation between the plates that are
connected to the supply. Hence we may say in general that the capacitance
of a capacitor is inversely proportional to the distance between the plates;
and the above relationships may be summarized thus:

area of plates

Capacitance oc —
distance between plates

In order to clarify this relationship, we now need to consider the space
between the charged plates of a capacitor. In this space, the charges set up
electric fields. The study of such electric fields is known as electrostatics.
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a Electric fields

Fig. 5.9 Electric field about an
isolated spherical charge

Fig. 5.10 Electric fields
between oppositely charged
surfaces. (a) Parallel plates;

(b) concentric cylinders (cable)

m Electric field

strength and
electric flux density

The space surrounding a charge can be investigated using a small charged
body. This investigation is similar to that applied to the magnetic field
surrounding a current-carrying conductor. However, in this case the charged
body is either attracted or repelled by the charge under investigation. The
space in which this effect can be observed is termed the electric field of the
charge and the force on the charged body is the electric force.

The lines of force can be traced out and they appear to have certain
properties:

1. In an electric field, each line of force emanates from or terminates in a
charge. The conventional direction is from the positive charge to the neg-
ative charge.

2. The direction of the line is that of the force experienced by a positive
charge placed at a point in the field, assuming that the search charge has
no effect on the field which it is being used to investigate.

3. The lines of force never intersect since the resultant force at any point in
the field can have only one direction.

The force of attraction or of repulsion acts directly between two adjacent
charges. All points on the surface of a conductor may be assumed to be at the
same potential, i.e. equipotential, and the lines of force radiate out from
equipotential surfaces at right angles. The most simple case is that of the
isolated spherical charge shown in Fig. 5.9. However, most electric fields exist
between two conductors. The two most important arrangements are those
involving parallel plates (as in a simple capacitor) and concentric cylinders
(as in a television aerial cable). The resulting fields are shown in Fig. 5.10.

l Fringing field —
small in relation to

remainder of field

(a) (b)

It should not be overlooked that the space between the conductors needs
to be filled with an insulator, otherwise the charges would move towards one
another and therefore be dissipated. The insulant is called a dielectric.

We can investigate an electric field by observing its effect on a charge. In the
SI method of measurement this should be a unit charge, i.e. a coulomb.
In practice this is such a large charge that it would disrupt the field being
investigated. Therefore our investigation is a matter of pure supposition.
The magnitude of the force experienced by this unit charge at any point
in a field is termed the electric field strength at that point. Electric field
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Fig. 5.11 A parallel-plate
capacitor

+0 coulombs

T
V volts d metres
[ 1 T -

—0 coulombs

strength is sometimes also known as electric stress. It can be measured
in newtons per unit charge and represented by the symbol E. (Since E
can also represent e.m.f., we use a bold type for E when representing
electric field strength and later we will meet D representing electric flux
density.)

It should be recalled that 1 J of work is necessary to raise the potential of
1 C of charge through 1 V. When a charge moves through an electric field,
the work done against or by the electric field forces is indicated by the change
in potential of the charge. Therefore to move a unit charge through a field so
that its potential changes by } volts requires } joules of work.

The most simple field arrangement which we can investigate is that
between parallel charged plates as shown in Fig. 5.11. Let us suppose that
the plates are very large and that the distance between them is very small. By
doing this, we can ignore any fringing effects of the type shown in Fig. 5.10
and assume that all the field exists between the plates. Let us also assume that
there is free space between the plates.

There is a potential difference of V" volts between the plates, therefore the
work in transferring 1 C of charge between the plates is V" joules. But work
is the product of force and distance, and in this case the distance is 4 metres.
Therefore the force experienced by the charge is the electric field strength £
given by

E= % volts per metre [5.9]

The total electric effect of a system as described by the lines of electric force
is termed the electric flux linking the system. Flux is measured in the same
units as electric charge, hence a flux of Q coulombs is created by a charge of
0 coulombs.

The electric flux density is the measure of the electric flux passing at right
angles through unit area, i.e. an area of 1 m?. It follows that if the area of the
plates in the capacitor of Fig. 5.11 is A then the electric flux density D is
given by

D= % coulombs per square metre [5.10]
From expressions [5.9] and [5.10]

Electric fluxdensity D 0 V QO » d _Cd
Electric field strength E A d VA A

In electrostatics, the ratio of the electric flux density in a vacuum to the elec-
tric field strength is termed the permittivity of free space and is represented by
€, Hence,
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m Relative

permittivity

Fig. 5.12 A parallel-plate
capacitor with a glass dielectric

Cd
€)= _A
A
or ©= % farads [5.11]

Permittivity of free space Symbol: €, Unit: farad per metre (F/m)

The value of €, can be determined experimentally by charging a capacitor,
of known dimensions and with vacuum dielectric, to a p.d. of } volts and
then discharging it through a ballistic galvanometer having a known ballistic
constant k coulombs per unit deflection. If the deflection is 6 divisions,

0=Cl=+k0
d k6 d
60 = C —_——— . —
A V A
From carefully conducted tests it has been found that the value of ¢, is
8.85x 10" F/m.

Hence the capacitance of a parallel-plate capacitor with vacuum or air

dielectric is given by

_ (8.85x107™) [F/m] x A [m’]
- d[m]

C farads [5.12]

If the experiment described in section 5.9 is performed with a sheet of glass
filling the space between plates as shown in Fig. 5.12 it is found that the
value of the capacitance is greatly increased; the ratio of the capacitance of
a capacitor having a given material as dielectric to the capacitance of that
capacitor with vacuum (or air) dielectric is termed the relative permittivity
of that material and is represented by the symbol €, Values of the relative
permittivity of some of the most important insulating materials are given in
Table 5.1; note that some of these vary with frequency.

Relative permittivity Symbol: €, Unit: none

From expression [5.11], it follows that if the space between the metal
plates of the capacitor in Fig. 5.12 is filled with a dielectric having a relative
permittivity €, capacitance

€,€. A

€= farads [5.13]

_ (8.85x10™) [F/m] x €, x A[m’]
- d [m]

farads

Glass
dielectric

~—
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Table 5.1 Important insulating
materials

m Capacitance of

a multi-plate
capacitor

Fig. 5.13 Multi-plate capacitor

Material Relative permittivity
Vacuum 1.0

Air 1.0006
Paper (dry) 2-2.5
Polythene 2-2.5
Insulating oil 3-4
Bakelite 4.5-5.5
Glass 5-10
Rubber 2-3.5
Mica 3-7
Porcelain 67
Distilled water 80
Barium titanate 6000+

and charge due to a p.d. of V' volts is

o=Ccr
= &eAV coulombs
Electric flux density D _ g s g e
Electric field strength E A d VA o

Let €. =€ [5.14]

where € is the absolute permittivity

Absolute permittivity € = €,€, = C [farads] x d [metres]

A[metres’]
Cd
= ~ farads per metre

hence the units of absolute permittivity are farads per metre, e.g.

€ =8.85% 10" F/m

Suppose a capacitor to be made up of # parallel plates, alternate plates being
connected together as in Fig. 5.13. Let

A = area of one side of each plate in square metres
d = thickness of dielectric in metres
and €, = relative permittivity of the dielectric

Figure 5.13 shows a capacitor with seven plates, four being connected to
A and three to B. It will be seen that each side of the three plates connected
to B is in contact with the dielectric, whereas only one side of each of the
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Example 5.4

Composite-
dielectric
capacitors

outer plates is in contact with it. Consequently, the useful surface area of
each set of plates is 6.4 square metres. For # plates, the useful area of each set
is (n — 1) A square metres.

Capacitance = w farads
-12 _
Capacitance = 88510 €(n - 4 farads [5.15]

d

A capacitor is made with seven metal plates connected as in Fig. 5.13
and separated by sheets of mica having a thickness of 0.3 mm and
a relative permittivity of 6. The area of one side of each plate is
500 cm®. Calculate the capacitance in microfarads.

Using expression [5.15], we have n =7, A = 0.05 m? 4 = 0.0003 m and
€ =06.

~ 8.85x 107 x 6 x6x0.05
0.0003

=0.053 uF

C =0.0531x10°F

A p.d. of 400 V is maintained across the terminals of the capacitor of
Example 5.4. Calculate

(a) the charge;
(b) the electric field strength or potential gradient;
(c) the electric flux density in the dielectric.

(a) Charge
0=Clr=0.0531[uF] x400[V]=21.2 uC
(b) Electric field strength or potential gradient
E=1V/d=400[V]/0.0003 [m]= 1333000 V/m
=1330 kV/m
(¢) Electric flux density
D=0/4=21.24[uC]/(0.05 x 6) [m?]
=70.8 uC/m?*

Suppose the space between metal plates M and N to be filled by dielectrics
1 and 2 of thickness 4, and 4, metres respectively, as shown in Fig. 5.14(a). Let

0 = charge in coulombs due to p.d. of V' volts
and A = area of each dielectric in square metres

then D=0/4

which is the electric flux density, in coulombs per metre squared, in A and B.
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Fig. 5.14 Parallel-plate
capacitor with two dielectrics

Example 5.6

dy
C C,
° - [l [l
N I I
M N
L -
V volts

+ V volts s

(a) (b)

Let E; and E, = electric field strengths in 1 and 2 respectively; then if the
relative permittivities of 1 and 2 are € and €, respectively, electric field
strength in A is

b 0

€€, €€,A

E =

and electric field strength in B is

D Q

E2 = =
€€, 6€€yA
E
Hence |—k=<2 [5.16]
2 €

1.e. for dielectrics having the same cross-sectional area in series, the electric
field strengths (or potential gradients) are inversely proportional to their
relative permittivities. Potential drop in a dielectric is

electric field strength X thickness

Therefore p.d. between plate M and the boundary surface L. between 1 and
2 is E\d,. Hence all points on surface L are at the same potential, i.e. L. is an
equipotential surface and is at right angles to the direction of the electric field
strength. It follows that if a very thin metal foil were inserted between 1 and
2, it would not alter the electric field in the dielectrics. Hence the latter may
be regarded as equivalent to two capacitances, C, and C,, connected in series
as in Fig. 5.14(b), where

=894 na =251
d, d,
and total capacitance between plates M and N is
GG,
C,+C,

A capacitor consists of two metal plates, each 400 X 400 mm, spaced
6 mm apart. The space between the metal plates is filled with a glass
plate 5 mm thick and a layer of paper 1 mm thick. The relative per-
mittivities of the glass and paper are 8 and 2 respectively. Calculate

(a) the capacitance, neglecting any fringing flux, and
(b) the electric field strength in each dielectric in kilovolts per
millimetre due to a p.d. of 10 kV between the metal plates.
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Fig. 5.15 Diagrams for
Example 5.6

%//i

10kV

1 mm

&

5mm
10 kV
1(] kV

(a) (b) (c)

Paper  Glass

(a) Figure 5.15(a) shows a cross-section (not to scale) of the capacitor;
and in Fig. 5.15(b), C, represents the capacitance of the paper layer between
M and the equipotential surface I. and C, represents that of the glass
between L. and N. From expression [5.13] we have

8.85x102 x2x04x04

C,= —=283x107F

0.001
—-12
and Cg:8.85><10 X8X0'4XO'4:2.265><10‘9F
0.005
If C is the resultant capacitance between M and N
1 10° 10°
— =10.7955 x 10°

= + -
C 283 2265
C=1.257 x 10°F = 0.001 257 uF
= 1260 pF

(b) Since C, and Cg are in series across 10 kV it follows from expression

[5.7] that the p.d., V, across the paper is given by

10 x2.265
P 2.83+2.265

and Ve=10-4.45=555kV

=445kV

These voltages are represented graphically in Fig. 5.15(c). Electric field
strength in the paper dielectric is

4.45/1 =445 kV/mm
and electric field strength in the glass dielectric is

5.55/5=1.11 kV/mm

These electric field strengths are represented by the slopes of AC and CB
for the glass and paper respectively in Fig. 5.15(c). Had the dielectric
between plates M and N been homogeneous, the electric field strength
would have been 10/6 = 1.67 kV/mm, as represented by the slope of the
dotted line AB in Fig. 5.15(c).

From the result of Example 5.6 it can be seen that the effect of using a
composite dielectric of two materials having different relative permittivities
is to increase the electric field strength in the material having the lower relative
permittivity. This effect has very important applications in high-voltage work.
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m Charging and

discharging
currents

O

o

Fig. 5.16 Charging and
discharging of a capacitor

Fig. 5.17 Voltage and current
during charging and discharging
of a capacitor

Suppose C in Fig. 5.16 to represent a capacitor of, say, 30 yF connected in
series with a centre-zero microammeter A across a slider S and one end of a
resistor R. A battery B is connected across R. If S is moved at a uniform
speed along R, the p.d. applied to C, indicated by voltmeter V, increases
uniformly from 0 to V volts, as shown by line OD in Fig. 5.17.

If C is the capacitance in farads and if the p.d. across C increases
uniformly from 0 to V" volts in ¢, seconds

Charging current = i, = 0O [coulombs or ampere seconds]

1; [seconds]
= CV'/t, amperes

1.e. charging current in amperes is equal to rate of change of charge in
coulombs per second and is

C [farads] X rate of change of p.d. in volts per second

Since the p.d. across C increases at a uniform rate, the charging current,
1;, remains constant and is represented by the dotted line .M in Fig. 5.17.

Time ¢

Suppose the p.d. across C to be maintained constant at }” volts during the
next #, seconds. Since the rate of change of p.d. is now zero, the current
(apart from a slight leakage current) is zero and is represented by the dotted
line NP. If the p.d. across C is then reduced to zero at a uniform rate by
moving slider S backwards, the microammeter indicates a current i; flowing
in the reverse direction, represented by the dotted line QT in Fig. 5.17. If 7,
is the time in seconds for the p.d. to be reduced from } volts to zero, then

0O =—1i;t; coulombs
i3 =—0/t; =—C X V'/t; amperes

i.e. discharge current in amperes is equal to rate of change of charge in
coulombs per second and is

C [farads] X rate of change of p.d. in volts per second
Since Q = i,1; = —i5t; (assuming negligible leakage current through C),

areas of rectangles OLMN and PQTF are equal
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Growth and
decay

In practice it is seldom possible to vary the p.d. across a capacitor at a con-
stant rate, so let us consider the general case of the p.d. across a capacitor of
C farads being increased by dv volts in d# seconds. If the corresponding
increase of charge is dg coulombs

dg=C"dv
If the charging current at that instant is  amperes
dg=1-ds
i-dr=C-dv
and i=C-dv/dt
i = C X rate of change of p.d. [5.17]

If the capacitor is being discharged and if the p.d. falls by dv volts in dz
seconds, the discharge current is given by

. dg . dv
=— =C-— 5.18
' de ' ds [ 1

Since dv is now negative, the current is also negative.

In section 5.1 we derived the curves of the voltage across a capacitor during
charging and discharging from the readings on a voltmeter connected
across the capacitor. We will now consider how these curves can be derived
graphically from the values of the capacitance, the resistance and the applied
voltage. At the instant when S is closed on position a (Fig. 5.3), there is no
p.d. across C; consequently the whole of the voltage is applied across R and
the initial value of the charging current=17= V'/R.

The growth of the p.d. across C is represented by the curve in Fig. 5.18.
Suppose v to be the p.d. across C and : to be the charging current ¢ seconds
after S is put over to position a. The corresponding p.d. across R = V' — v,
where J/is the terminal voltage of the battery. Hence

iIR=1V-v

and i=V_v
R

[5.19]

If this current remained constant until the capacitor was fully charged, and
if the time taken was x seconds, the corresponding quantity of electricity is

V=

= R X x coulombs

With a constant charging current, the p.d. across C would have increased
uniformly up to V volts, as represented by the tangent LM drawn to the
curve at L.

But the charge added to the capacitor also equals increase of p.d. X C
which is
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Fig. 5.18 Growth of p.d.
across a capacitor in series
with a resistor

Fig. 5.19 Growth of p.d.
across a capacitor in series
with a resistor
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Hence Xx=C(V —v)
and x = CR = the time constant, 7, of the circuit
Le. T=CR seconds

[5.20]

The construction of the curve representing the growth of the p.d. across
a capacitor is therefore similar to that described in section 8.6 for the growth
of current in an inductive circuit. Thus, OA in Fig. 5.19 represents the
battery voltage 7, and AB the time constant 7" Join OB, and from a point D
fairly near the origin draw DE = T seconds and draw EF perpendicularly.

Join DF| etc. Draw a curve such that OB, DF| etc. are tangents to it.

From expression [5.19] it is evident that the instantaneous value of the
charging current is proportional to (/" — v), namely the vertical distance
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Fig. 5.20 Discharge current,

Example 5.7

Analysis of
growth and
decay

between the curve and the horizontal line PQ in Fig. 5.18. Hence the shape
of the curve representing the charging current is the inverse of that of the
p.d. across the capacitor and is the same for both charging and discharging
currents (assuming the resistance to be the same). Its construction is illus-
trated by the following example.

A 20 uF capacitor is charged to a p.d. of 400 V and then discharged
through a 100 000 Q2 resistor. Derive a curve representing the dis-
charge current.

From equation [5.20]:

2
Time constant = 100 000 [€Q2] x _20 [F]1=2s

1000 000
Initial value of discharge current is
r = 400 =0.004 A =4 mA
R 100 000

Hence draw OA in Fig. 5.20 to represent 4 mA and OB to represent 2 s. Join
AB. From a point C corresponding to, say, 3.5 mA, draw CD equal to 2 s
and DE vertically. Join CE. Repeat the construction at intervals of, say,
0.5 mA and draw a curve to which AB, CE, etc. are tangents. This curve
represents the variation of discharge current with time.

Current (mA)

Time (s)

Suppose the p.d. across capacitor C in Fig. 5.3, # seconds after S is switched
over to position a, to be v volts, and the corresponding charging current to
be i amperes, as indicated in Fig. 5.21. Also, suppose the p.d. to increase
from v to (v + dv) volts in dz seconds, then, from expression [5.17],

i-c. %
dr
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Fig. 5.21 Variation of current
and p.d. during charging

—+— | Charging current
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and corresponding p.d. across R is

Ri=RC - dv
dt
But V' =p.d. across C + p.d. across R
v=virCc. -2
dz
V—v=RC - do
dr
so that i = do
RC V-vo

Integrating both sides, we have
LI Ry
RC

where A is the constant of integration.
When 1=0,v=0,

A=InV
so that
t V
—=1In
RC V—o
128 '
=CR(“

[5.21]
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and v=V(1-€e7) volts [5.22]
Ao i=C- P oor g
dr dt
Vo .
= — e #C 5.23
) R c [ 1

At the instant of switching on, r=0and ¢ =1,
V
Initial value of current = 7 = (say)/

This result is really obvious from the fact that at the instant of switching on
there is no charge on C and therefore no p.d. across it. Consequently the
whole of the applied voltage must momentarily be absorbed by R.

Substituting for V'/R in expression [5.23], we have instantaneous charging
current

i=lewe [5.24]

If the p.d. across the capacitor continued increasing at the initial rate, it
would be represented by OA, the tangent drawn to the initial part of the
curve. If T'is the time constant in seconds, namely the time required for the
p.d. across C to increase from zero to its final value if it continued increasing
at its initial rate, then

. . v
Initial rate of increase of p.d. = = volts per second [5.25]
Time constant Symbol: 7 Unit: second (s)

But it follows from equation [5.21] that at the instant of closing the switch
on position a v = 0, then

V' =RC do
dt
Therefore initial rate of change of p.d. is
dr  RC [5.26]
Equating [5.25] and [5.26], we have
r_”r.
T RC
T=RC seconds [5.27]
Hence we can rewrite equations [5.22] and [5.24] thus:
v=V(-eT) [5.28]

and i=leT [5.29]
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m Discharge of

a capacitor
through a resistor

Fig. 5.22 Variation of current
and p.d. during discharge

Having charged capacitor C in Fig. 5.3 to a p.d. of V" volts, let us now move
switch S over to position b and thereby discharge the capacitor through R.
The pointer of microammeter A is immediately deflected to a maximum
value in the negative direction, and then the readings on both the microam-
meter and the voltmeter (Fig. 5.3) decrease to zero as indicated in Fig. 5.22.

<

Suppose the p.d. across C to be v volts 7 seconds after S has been moved
to position b, and the corresponding current to be 7 amperes, as in Fig. 5.22,
then

i=—o [5.30]

The negative sign indicates that the direction of the discharge current is the
reverse of that of the charging current.
Suppose the p.d. across C to change by dv volts in dz seconds,

1 =C.-— 5.31
J m [5.31]

Since dv is now negative,  must also be negative, as already noted. Equating
[5.30] and [5.31], we have

v .dv

R dr
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Example 5.8

so that
dr do
RC v
Integrating both sides, we have

!

—=—-lnv+ A
RC
When ¢t =0, v =V, so that A =In V. Hence
L /e
RC
so that
|
_— eRC
v
and v=Ver=VeT
Also
i=—2 = —Ke_ﬁ =—JeT
i=—Ie®e

where / = initial value of the discharge current = '/R.

[5.32]

[5.33]

[5.34]

An 8 UF capacitor is connected in series with a (0.5 MQ resistor across

a 200 V d.c. supply. Calculate:

(a) the time constant;
(b) the initial charging current;

(c) the time taken for the p.d. across the capacitor to grow to

160 V;

(d) the current and the p.d. across the capacitor 4.0 s after it is

connected to the supply.

(a) From equation [5.27]

Time constant=0.5x 10°x 8 x 10°=4.0 s

(b) Initial charging current is

v__ w0,
R 05x10°
= 400 uA

(c) From equation [5.28]
160 = 200(1 — e +)
e =02
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Transients in
CR networks

From mathematical tables

Lot
4
1=644s
Or alternatively
co 1
e? = — = 5
0.2

t
— |log. =log5
o

But e=2.718

| 4x0.699
0.4343

(d) From equation [5.28]
v =200(1 - e%) =200(1 —0.368)
=200x0.632=1264V

= 6.44s

It will be seen that the time constant can be defined as the time required
for the p.d. across the capacitor to grow from zero to 63.2 per cent of its final
value.

From equation [5.29]

Corresponding current = 7 =400 - e = 400 x 0.368
=147 uA

We have considered the charging and discharging of a capacitor through a
resistor. In each case, the arrangement has involved a network containing
capacitance and resistance, hence such a network is known as a CR network.

In practice, we are not likely to come across such simple arrangements as
the connection of a battery to a CR network, but it is not much of a pro-
gression to an exceedingly common situation. Most communications circuits
now involve the use of short pulses of voltage being applied to a variety
of circuits, some of which are quite similar to the CR networks which we
have considered. A pulse basically consists of the sudden application of the
voltage source followed almost immediately by its being switched off.

This first of all begs the question — what do we mean by switching off
almost immediately? Let us therefore again consider expression [5.24], i.e.

L

1=1lecr
Such a relation is an exponential expression of the form e™. Let us consider
the way in which this expression changes for increasing values of «; there is
no point in considering negative values since these would relate to a situation
prior to switching which does not fall within our period of interest. It

would be convenient to establish Table 5.2 by programming a computer or
calculator.
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Table 5.2

Fig. 5.23 The exponential
function

Example 5.9

Variation of e™*

x=0 ¢=1.0000
x=1 ¢'=0.3679
x=2 e¢?=0.1353
x=3 ¢ =10.0497
x=4 e *=0.0183
x=5 ¢ =0.0067
x=10 ¢1°=0.000 05

0.1353

0.0497 0.0183  0.0067
l

2 3 4 5 x

If we draw the corresponding characteristic, it takes the form shown in
Fig. 5.23. This is known as an exponential decay and it has the same form as
all the curves which have appeared in this chapter.

Returning to expression [5.24] above, when ¢ = CR, i.e. when the time
after switching is equal to the time constant, then

i=Te'=0.3681
However, when 7 = 5CR, then
i=1e*=0.0077

Effectively the decay has ended at this point. This lets us interpret the term
‘almost immediately’. If a supply is switched on and off then, provided the
period between switching is less than five times the time constant of the net-
work, this can be considered as almost immediately. If the period between
switching is longer, the action of the first operation is effectively independent
of the second.

In practice, many networks responding to pulsed switching experience
a rate of switching which causes the second transient change to commence
before the first has finished. The effects are best demonstrated by means of
the following examples.

For the network shown in Fig. 5.24:

(a) determine the mathematical expressions for the variation of
the voltage across the capacitor and the current through the
capacitor following the closure of the switch at 7 = 0 on to
position 1;

(b) the switch is closed on to position 2 when ¢ = 100 ms: deter-
mine the new expressions for the capacitor voltage and current;

(c) plot the voltage and current waveforms for ¢t =0 to 7 =200 ms.
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Fig. 5.24 Network for
Example 5.9

Fig. 5.25 Voltage and current
waveforms for Example 5.9

e 1 2
I I O O
v 100 kQ
R,
- = C —
0101 200kQ

(a) For the switch in position 1, the time constant is
T,=CR,=0.1 x10"°x 100 x 10° =10 ms
v.= V(1 —e 1) =10(1 — e x) volts

and i.=[efﬁ =L
100 x 10°

_ 3
N e 10x10-3
I
=100e =107 microamperes
(b) For the switch in position 2, the time constant is
T,=CR,=0.1 x 107° x 200 x 10° = 20 ms
In the transient expressions, ¢ has to be measured from the second switching
and not from the initial switching. Hence
v.=Ve T =10e 2x107 volts
B 10
200 x 10°

1 t
and i =1e T2 e 20x10-3

c

o,
= 50e 2x107 microamperes

(¢) The current and voltage waveforms are shown in Fig. 5.25.

It will be noted that, in the first switching period, five times the time con-
stant is 50 ms. The transient has virtually finished at the end of this time and
it would not have mattered whether the second switching took place then or
later. However, during the second period, the transient takes the full 100 ms.

2 (V)
10
1‘\ (ﬂA) T T T T T T T T T T
¢ 20 40 60 80 100 120 140 160 180 200 t
100 Time (ms)
50
100 120 140 160 180 200
0 T T T T i L . L L L
20 40 60 80 t
—50 Time (ms)
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Example 5.10

Fig. 5.26 Voltage and current
waveforms for Example 5.10

For the network shown in Fig. 5.24, the switch is closed on to pos-
ition 1 as in Example 5.9. However, it is closed on to position 2 when
t =10 ms. Again determine the voltage and current expressions and
hence plot the voltage and current waveforms.

For the switch in position 1, the time constant is 10 ms as in Example 5.9,
and the voltage and current expressions are again as before. However, the
switch is moved to position 2 while the transient is proceeding.

When 7 =10 ms

0,=10(1 - ¢ ) =10(1 —e ) = 6.32V

c

The second transient commences with an initial voltage across the capac-
itor of 6.32 V. The voltage decay is therefore

J __t
v.=Ve 7n=6.32e w0 yolts

6.32 i e,
Te 0= 3l.6e »0” microamperes

and =
200 x 10~

ZC
The current and voltage waveforms are shown in Fig. 5.26.

It would be possible to extend such an example by repeatedly switching
the supply on and off. The analysis would be a repetition of either Example
5.9 or 5.10 depending on the rate of switching.

We can also analyse more complex networks by combining the application
of network theorems with exponential expressions. Again this can more
readily be illustrated by means of an example.

2 (V)
10V fmmmmmm o mm oo oozomee——o—oo-

6.32V -

T T T T T
10 20 30 40 50 t
Time (ms)

i (uA)

100

36.8

I3
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Fig. 5.27 Network for
Example 5.11

100 kQ 100 kQ
— o

i

Fig. 5.28 For Example 5.11

100 k2

O

150kQ |,
3V }
—| o2ur 200kQ

Fig. 5.29 For Example 5.11

For the network shown in Fig. 5.27, the switch is closed on to position
1 when 7 =0 and then moved to position 2 when 7 =20 ms. Determine
the voltage across the capacitor when 7' = 30 ms.

100 kQ 100kQ 2

L

02uF ——

L

6V
= 100 kQ 200 kQ

In order to analyse the transient effect, it is necessary to simplify the
supply network to the capacitor by means of Thévenin’s theorem. The supply
voltage is shown in Fig. 5.28. The equivalent resistance is given by
100 x 100
100 + 100

X&::ﬁv
100 + 100

R, =100 + =150 kQ

V:J/C =6
The network hence can be replaced as shown in Fig. 5.29.

During charging
v,=V(—em)=3(1-¢T)

where

T=CR=0.2x10"x 150 x 10° = 30 ms
hence

v,= 3(1 — ¢ )
For =20 ms,

v.=3(1—e ) =146V
During discharge with switch in position 2
v.=VeTR=146eT
where
T=CR=0.2x10"x200x 10° = 40 ms
But the time of # = 30 ms is 10 ms after the second switching action, hence
v.=146 x e =114V

The waveform of the voltage across the capacitor is shown in Fig. 5.30.
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Fig. 5.30 Waveform of voltage 2. (V)
across capacitor in Example 5.11

146V

10 20 30 Time (ms)

m Energy stored . . . .
in a charged Suppose the p.d. across a capacitor of capacitance C farads is to be increased
from v to (v + dv) volts in dr seconds. From equation [5.18], the charging

capacitor ) vOIu
current, 7 amperes, is given by
. dv
i=C-—
ds

Instantaneous value of power to capacitor is

. dv

v watts = vC - — watts

dr
and energy supplied to capacitor during interval dz is
dv .
oC - U dt = Cv - dv joules
!

Hence total energy supplied to capacitor when p.d. is increased from 0 to V

volts is
v v
J Co-dv= %C[vz](J =1CV?* joules
0
w=1cr” [5.35]
o], @
also W=%C[—} =1.=
C C

For a capacitor with dielectric of thickness 4 metres and area 4 square
metres, energy per cubic metre is

1 C1? 1 ed 17

=1.ef?= %DE = 107 joules [5.36]

These expressions are similar to expression [8.22] for the energy stored
per cubic metre of a magnetic field.
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m Force of

attraction
between oppositely
charged plates

;?_M

P

Fig. 5.31 Attraction between
charged parallel plates

A 50 uF capacitor is charged from a 200 V supply. After being dis-
connected it is immediately connected in parallel with a 30 uF
capacitor which is initially uncharged. Find:

(a) the p.d. across the combination;
(b) the electrostatic energies before and after the capacitors are
connected in parallel.

(a) From equation [5.2]
o=CV
Charge = (50 X 107 [F] x 200 [V] = 0.01 C

When the capacitors are connected in parallel, the total capacitance is
80 uF, and the charge of 0.01 C is divided between the two capacitors:

o=Ccr
0.01[C] = (80 x 107°) [F] x p.d.
p.d. across capacitors = 125 V

(b) From equation [5.35] it follows that when the 50 uF capacitor is
charged to a p.d. of 200 V:

w=1cp?
Electrostatic energy = 1 X (50 x 107°) [F] x (200)* [V*]
~1.0]

With the capacitors in parallel:
Total electrostatic energy = 5 x 80 x 107 x (125)° = 0.625 J

It is of interest to note that there is a reduction in the energy stored in the
capacitors. This loss appears as heat in the resistance of the circuit by the
current responsible for equalizing the p.d.s in the spark that may occur when
the capacitors are connected in parallel, and in electromagnetic radiation if
the discharge is oscillatory.

Let us consider two parallel plates M and N (Fig. 5.31) immersed in a homo-
geneous fluid, such as air or oil, having an absolute permittivity €. Suppose
the area of the dielectric to be A square metres and the distance between M
and N to be x metres. If the p.d. between the plates is V volts, then from
[5.35], energy per cubic metre of dielectric is

1 [VJZ.
—e| — | joules
2 \x

Suppose plate M to be fixed and N to be movable, and let F* be the force
of attraction, in newtons, between the plates. Let us next disconnect the
charged capacitor from the supply and then pull plate N outwards through a
distance dx metres. If the insulation of the capacitor is perfect, the charge on
the plates remains constant. This means that the electric flux density and
therefore the potential gradient in the dielectric must remain unaltered, the
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Dielectric
strength

constancy of the potential gradient being due to the p.d. between plates M
and N increasing in proportion to the distance between them. It follows from
expression [5.36] that the energy per cubic metre of the dielectric remains
constant. Consequently, all the energy in the additional volume of the dielec-
tric must be derived from the work done when the force F' newtons acts
through distance dx metres, namely F' - dx joules, i.e.

2
F-dlee(zj -A-dx
2 | x

2
A= lEA [KJ newtons [5.37]
2 X

=1 €4 x (potential gradient in volts per metre)’

Two parallel metal discs, each 100 mm in diameter, are spaced
1.0 mm apart, the dielectric being air. Calculate the force, in new-
tons, on each disc when the p.d. between them is 1.0 kV.

Area of one side of each plate
A= %dz = 0.7854 % (0.1)?

=0.007 854 m*
Potential gradient

E= % =1000 [V]/0.001 [m]

=10°V/m

From expression [5.37] force

2
F = leA[Kj
2 x

= % X (8.85 x 10™2) [F/m] x 0.007 854 [m]* X (10° [V/m?

=0.035N

If the p.d. between the opposite sides of a sheet of solid insulating material
is increased beyond a certain value, the material breaks down. Usually this
results in a tiny hole or puncture through the dielectric so that the latter is
then useless as an insulator.

The potential gradient necessary to cause breakdown of an insulating
medium is termed its dielectric strength and is usually expressed in megavolts
per metre. The value of the dielectric strength of a given material decreases
with increase of thickness, and Table 5.3 gives the approximate dielectric
strengths of some of the most important materials.
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Table 5.3

Leakage
and conduction
currents in capacitors

Fig. 5.32 Equivalent circuit of
a practical capacitor

Fig. 5.33 Conduction current

Material Thickness Dielectric strength
(mm) (MV/m)
Air (at normal pressure and temperature) 0.2 5.75
0.6 4.92
1 4.46
6 3.27
10 2.98
Mica 0.01 200
0.1 176
1.0 61
Glass (density 2.5) 1 28.5
5 18.3
Ebonite 1 50
Paraffin-waxed paper 0.1 40-60
Transformer oil 1 200
Ceramics 1 50

When considering dielectric strength, we noted that the flow of electrons in
a dielectric could be due to breakdown. However, it would be incorrect to
consider that there is no flow of electrons when the applied voltage is at a
value less than breakdown. No dielectric is perfect; instead every dielectric
has a few free electrons (partly due to impurities) and therefore effectively
acts as an insulator of very high resistance between the plates of a capacitor.

It follows that when we apply a voltage across the plates of a capacitor,
a small leakage current passes between the plates due to the free electrons
in the dielectric. For most practical purposes this can be neglected because
the leakage current is so small. The effect can be represented as shown in
Fig. 5.32, but in most instances the resistance has a value in excess of 100 MQ.

If we were to charge a capacitor and then switch off the supply voltage,
the capacitor would remain charged. However, it would be found that after,
say, a few hours some of the charge would have disappeared. The reason is
that the equivalent resistance would give rise to the decay situation which we
have analysed, but with a very large time constant.

We should not confuse the leakage current with the charging current
which is in the conductors connecting the voltage source to the plates of a
capacitor. If we consider the circuit shown in Fig. 5.33, closure of the switch

Charging current

(electron flow) + —

Conduction current
(electron flow) 1}

+

ppe—
1
1
1
i
—_—
T p— )
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E Displacement
current in a
dielectric
7
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Fig. 5.34 Magnetic field due to
displacement current

Types of
capacitor and
capacitance

R

Fixed capacitor

_\H\_

Variable capacitor

-

Electrolytic capacitor

Fig. 5.35 Circuit symbols for
capacitors

causes electrons to flow from the positive plate of C; via the battery to the
negative plate of C,.

At the same time, the negative plate of C, receives electrons from the
positive plate of C,. This flow of electrons which does not pass through the
battery is referred to as conduction current.

Let us consider the capacitor in Fig. 5.34 with a vacuum between the plates.
There are no electrons in the space between the plates and therefore there
cannot be any movement of electrons in this space when the capacitor is
being charged. We know, however, that an electric field is being set up and
that energy is being stored in the space between the plates; in other words,
the space between the plates of a charged capacitor is in a state of electrostatic
strain.

We do not know the exact nature of this strain (any more than we know
the nature of the strain in a magnetic field), but James Clerk Maxwell, in
1865, introduced the concept that any change in the electric flux in any region
is equivalent to an electric current in that region, and he called this electric
current a displacement current, to distinguish it from the conduction current
referred to above.

We have already noted that capacitors are devices which promote capacit-
ance, 1.e. they are designed to have a high ability to hold electric charge.
Capacitors are generally made to have a fixed value of capacitance, but some
are variable. The symbols for fixed and variable capacitors are shown in
Fig. 5.35.

(a) Fixed capacitors

The fixed capacitors come in a variety of groups depending on the type of
dielectric used.

Paper capacitors

This type has already been considered in Fig. 5.1, the electrodes of the
capacitor being layers of metal foil interleaved with paper impregnated with
wax or oil. Such capacitors are commonly used in the power circuits of
household appliances.

Electrolytic capacitors

The type most commonly used consists of two aluminium foils, one with an
oxide film and one without, the foils being interleaved with a material such as
paper saturated with a suitable electrolyte, for example ammonium borate.
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The aluminium oxide film is formed on the one foil by passing it through an
electrolytic bath of which the foil forms the positive electrode. The finished
unit is assembled in a container — usually of aluminium — and hermetically
sealed. The oxide film acts as the dielectric, and as its thickness in a capacitor
suitable for a working voltage of 100 V is only about 0.15 um, a very large
capacitance is obtainable in a relatively small volume.

The main disadvantages of this type of capacitor are: (a) the insulation
resistance is comparatively low, and (b) it is only suitable for circuits where
the voltage applied to the capacitor never reverses its direction. Electrolytic
capacitors are mainly used where very large capacitances are required, e.g.
for reducing the ripple in the voltage wave obtained from a rectifier.

Solid types of electrolytic capacitors have been developed to avoid some
of the disadvantages of the wet electrolytic type. In one arrangement, the wet
electrolyte is replaced by manganese dioxide. In another arrangement the
anode is a cylinder of pressed sintered tantalum powder coated with an
oxide layer which forms the dielectric. This oxide has a conducting coat of
manganese dioxide which acts as an electron conductor and replaces the ionic
conduction of the liquid electrolyte in the wet type. A layer of graphite forms
the connection with a silver or copper cathode and the whole is enclosed in
a hermetically sealed steel can.

Mica capacitors

This type consists either of alternate layers of mica and metal foil clamped
tightly together, or of thin films of silver sputtered on the two sides of a mica
sheet. Owing to its relatively high cost, this type is mainly used in high-
frequency circuits when it is necessary to reduce to a minimum the loss in
the dielectric.

Polyester capacitors

Polyester is relatively new as a dielectric when used in capacitors. It is manu-
factured in very thin films of thickness as little as 2 ym and is metallized on
one side. Two films are then rolled together rather like the paper-insulated
capacitor.

Such capacitors can be very small so that there is insufficient outside
surface on which to print the ratings and other data. For this reason, they
often come with a colour coding after the fashion used with resistors. Usually
a black band is printed near the lead connected to the outer metal foil
electrode. This lead should be kept at the lower working potential.

These capacitors can operate at high voltages, i.e. a few thousand volts,
and the leakage resistance is high, say 100 MQ.

Ceramic capacitors

The ceramic capacitor is manufactured in many forms, but all are basically
the same. A thin ceramic dielectric is coated on both sides with a metal.
The capacitor is made up by making a stack of these ceramic layers, each
layer being separated from the next by more ceramic. The plates are
connected by electrodes to the supply leads and a coating of ceramic is then
applied to the outside of the stack. The arrangement is then fired to give a
solid device.
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Fig. 5.36 Sintered tantalum
capacitor

Fig. 5.37 A variable capacitor

Such capacitors generally have small capacitance values from 1 pF to
about 1 uF. Like the polyester capacitors, working voltages can be up to a few
thousand volts, but the leakage resistance can be even higher, say 1000 MQ.
Ceramic capacitors are useful in high-temperature situations.

Ceramic materials include compounds of barium titanate which, it will be
recalled, has an exceptionally high relative permittivity (6000+). This per-
mits very small separation between the plates and gives rise to high values of
capacitance from relatively small capacitors.

Tantalum electrolytic capacitors

These capacitors are much smaller than the corresponding aluminium
electrolytic capacitors. The construction may take the form indicated in
Fig. 5.36, in which one plate consists of pressed, sintered tantalum powder
coated with an oxide layer which is the dielectric. The case of brass, copper
or even silver forms the other plate. Layers of manganese dioxide and
graphite form the electrolyte.

Metal case

‘ Sintered tantalum

|
t ~ |

Insulated seal I
!

—+—— Dielectric

Solder

Electrolyte

(b) Variable capacitors

These require two sets of rigid plates which can be moved between one
another as indicated in Fig. 5.37. The plates must be rigid so that they can
move between each other without touching. It follows that the dielectric
between the plates is air. Normally one set of plates is fixed and the other
made to rotate. The greater the insertion of the movable plates then the
greater the capacitance. Most of us know this type of capacitor because it is
the device used to tune radios.

Fixed
T / plates \
Terminals
[r—

Fixed
plates

Moving plates
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Summary of important
formulae

(c) Other capacitance

It is worth noting that capacitance exists between any two conductors. This
means that capacitance exists in every circuit. However, normally the con-
ductors or wires are so small and so far apart that the capacitance between
them can be ignored. In long transmission lines or in high-frequency com-
munications systems this is not always the case. At a time when we are being
introduced to circuit theory, it is sufficient to ignore circuit capacitance
except when capacitors are part of the circuit.

o=Ccr
0O [coulombs] = C [farads] X V' [volts] [5.2]
luF=10"°F
1pF=10"F
For capacitors in parallel
C=C,+GC+... [5.3]
For capacitors in series
1 1 1
===d =10, [5.5]
(@ (0
For C; and C, in series
vio=y.—2 [5.7]
C +C,
. . . V
Electric field strength in dielectric = E = ’ [5.9]
Electric flux density = D = % [5.10]
A
Capacitance C = % [5.13]
oo D
Absolute permittivity = T = € = €€, [5.14]
Permittivity of free space is
€=28.85x 10" F/m
Relative permittivity of a material is
capacitance of capacitor with that material as dielectric
capacitance of same capacitor with vacuum dielectric
Capacitance of parallel-plate capacitor with # plates is
- 1A
n-h4 [5.15]

d
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Summary of important

. For two dielectrics, A and B, of same areas, in series
formulae continued

Electric field strength or potential gradient in A

Electric field strength or potential gradient in B

__ relative permittivity of B

= : T [5.16]
relative permittivity of A
Charging current of capacitor 7 is
dq =C- do [5.18]
dt dt
For R and C in series across d.c. supply
v=V(-e ) [5.22]
and  i=Jew [5.24]
Time constant is
T=RC [5.27]
For C discharged through R
v=Vex [5.32]
and  i=-le®@ [5.33]
Energy stored in capacitor is
W=21CV? joules [5.35]
Energy per cubic metre of dielectric is
1 1 1 D?
—€E*= —DE = —— joules [5.36]
2 2 2 €
Electrostatic attraction between parallel plates is
1 (v
F=—€eA (—J newtons [5.37]
2 ¥

Terms and concepts Capacitance is a measure of the ability to store electric charge.

Capacitance is also a measure of the ability to store energy in an electric

field.
Charging is the process of increasing the charge held in a capacitor.
Discharging is the process of reducing the charge held in a capacitor.

Farad is the capacitance of a capacitor which has a p.d. of 1 V when
maintaining a charge of 1 C.

Leakage current is the rate of movement of charge through a dielectric.

Permittivity is the ratio of electric flux density to electric field strength
measured in farads per metre.
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Exercises 5

1.

10.

A 20 uF capacitor is charged at a constant current of
5 pA for 10 min. Calculate the final p.d. across the
capacitor and the corresponding charge in coulombs.

. Three capacitors have capacitances of 10 uF, 15 uF

and 20 uF respectively. Calculate the total capacitance
when they are connected (a) in parallel, (b) in series.

. A 9 uF capacitor is connected in series with two

capacitors, 4 uF and 2 uF respectively, which are
connected in parallel. Determine the capacitance of
the combination. If a p.d. of 20 V is maintained across
the combination, determine the charge on the 9 uF
capacitor and the energy stored in the 4 uF capacitor.

. Two capacitors, having capacitances of 10 uF and

15 uF respectively, are connected in series across a
200 V d.c. supply. Calculate: (a) the charge on each
capacitor; (b) the p.d. across each capacitor. Also find
the capacitance of a single capacitor that would be
equivalent to these two capacitors in series.

. Three capacitors of 2, 3 and 6 UF respectively are con-

nected in series across a 500 V d.c. supply. Calculate:
(a) the charge on each capacitor; (b) the p.d. across
each capacitor; and (c) the energy stored in the 6 uF
capacitor.

. A certain capacitor has a capacitance of 3 uF. A

capacitance of 2.5 uF is required by combining this
capacitance with another. Calculate the capacitance
of the second capacitor and state how it must be
connected to the first.

. A capacitor A is connected in series with two capacitors

B and C connected in parallel. If the capacitances of A,
B and C are 4, 3 and 6 uF respectively, calculate the
equivalent capacitance of the combination. If a p.d. of
20 V is maintained across the whole circuit, calculate
the charge on the 3 uF capacitor.

. Three capacitors, A, B and C, are connected in series

across a 200 V d.c. supply. The p.d.s across the capa-
citors are 40, 70 and 90 V respectively. If the capacitance
of A is 8 uF, what are the capacitances of B and C?

. Two capacitors, A and B, are connected in series

across a 200V d.c. supply. The p.d. across A is
120 V. This p.d. is increased to 140 V when a 3 uF
capacitor is connected in parallel with B. Calculate the
capacitances of A and B.
Show from first principles that the total capacitance of
two capacitors having capacitances C, and C, respect-
ively, connected in parallel, is C, + C,.

A circuit consists of two capacitors A and B in par-
allel connected in series with another capacitor C. The
capacitances of A, B and Care 6 uF, 10 uF and 16 uF

11.

12.

13.

14.

15.

respectively. When the circuit is connected across a
400 V d.c. supply, calculate: (a) the potential difference
across each capacitor; (b) the charge on each capacitor.
On what factors does the capacitance of a parallel-plate
capacitor depend?

Derive an expression for the resultant capacitance
when two capacitors are connected in series.

Two capacitors, A and B, having capacitances of
20 uF and 30 uF respectively, are connected in series
to a 600V d.c. supply. Determine the p.d. across
each capacitor. If a third capacitor C is connected in
parallel with A and it is then found that the p.d. across
B is 400 V, calculate the capacitance of C and the
energy stored in it.

Derive an expression for the energy stored in a
capacitor of C farads when charged to a potential
difference of J volts.

A capacitor of 4 uF capacitance is charged to a
p.d. of 400 V and then connected in parallel with
an uncharged capacitor of 2 UF capacitance. Calculate
the p.d. across the parallel capacitors and the energy
stored in the capacitors before and after being con-
nected in parallel. Explain the difference.

Derive expressions for the equivalent capacitance of a
number of capacitors: (a) in series; (b) in parallel.

Two capacitors of 4 uF and 6 uF capacitance
respectively are connected in series across a p.d. of
250 V. Calculate the p.d. across each capacitor and the
charge on each. The capacitors are disconnected from
the supply p.d. and reconnected in parallel with each
other, with terminals of similar polarity being joined
together. Calculate the new p.d. and charge for each
capacitor. What would have happened if, in making
the parallel connection, the connections of one of the
capacitors had been reversed?

Show that the total capacitance of two capacitors
having capacitances C; and C, connected in series is
C,C,/(C, + C).

A 5 UF capacitor is charged to a potential differ-
ence of 100 V and then connected in parallel with
an uncharged 3 uF capacitor. Calculate the potential
difference across the parallel capacitors.

Find an expression for the energy stored in a capacitor
of capacitance C farads charged to a p.d. of }/volts.

A 3 uF capacitor is charged to a p.d. of 200 V and
then connected in parallel with an uncharged 2 uF
capacitor. Calculate the p.d. across the parallel capacitors
and the energy stored in the capacitors before and after
being connected in parallel. Account for the difference.
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Exercises 5 continued

16.

17.

18.

19.

20.

21.

Explain the terms electric field strength and permittivity.
Two square metal plates, each of size 400 cm?’
are completely immersed in insulating oil of relative
permittivity 5 and spaced 3 mm apart. A p.d. of 600 V
is maintained between the plates. Calculate: (a) the
capacitance of the capacitor; (b) the charge stored on
the plates; (c) the electric field strength in the dielec-
tric; (d) the electric flux density.
A capacitor consists of two metal plates, each having
an area of 900 cm?, spaced 3.0 mm apart. The whole of
the space between the plates is filled with a dielectric
having a relative permittivity of 6. A p.d. of 500 V is
maintained between the two plates. Calculate: (a) the
capacitance; (b) the charge; (c) the electric field
strength; (d) the electric flux density.
Describe with the aid of a diagram what happens when
a battery is connected across a simple capacitor com-
prising two metal plates separated by a dielectric.

A capacitor consists of two metal plates, each
having an area of 600 cm? separated by a dielectric
4 mm thick which has a relative permittivity of 5.
When the capacitor is connected to a 400 V d.c. sup-
ply, calculate: (a) the capacitance; (b) the charge; (c)
the electric field strength; (d) the electric flux density.
Define: (a) the farad; (b) the relative permittivity.

A capacitor consists of two square metal plates of
side 200 mm, separated by an air space 2.0 mm wide.
The capacitor is charged to a p.d. of 200 V and a sheet
of glass having a relative permittivity of 6 is placed
between the metal plates immediately they are discon-
nected from the supply. Calculate: (a) the capacitance
with air dielectric; (b) the capacitance with glass dielec-
tric; (c) the p.d. across the capacitor after the glass plate
has been inserted; (d) the charge on the capacitor.
What factors affect the capacitance that exists between
two parallel metal plates insulated from each other?

A capacitor consists of two similar, square,

aluminium plates, each 100 mm X 100 mm, mounted
parallel and opposite each other. Calculate the capacit-
ance when the distance between the plates is 1.0 mm
and the dielectric is mica of relative permittivity 7.0.
If the plates are connected to a circuit which provides
a constant current of 2 A, how long will it take the
potential difference of the plates to change by 100 V,
and what will be the increase in the charge?
What are the factors which determine the capacitance
of a parallel-plate capacitor? Mention how a variation
in each of these factors will influence the value of
capacitance.

22,

23.

24,

25.

26.

Calculate the capacitance in microfarads of a
capacitor having 11 parallel plates separated by mica
sheets 0.2 mm thick. The area of one side of each
plate is 1000 mm* and the relative permittivity of
mica is 5.

A parallel-plate capacitor has a capacitance of 300 pF.
It has 9 plates, each 40 mm X 30 mm, separated by
mica having a relative permittivity of 5. Calculate the
thickness of the mica.

A capacitor consists of two parallel metal plates, each of
area 2000 cm” and 5.0 mm apart. The space between
the plates is filled with a layer of paper 2.0 mm thick
and a sheet of glass 3.0 mm thick. The relative
permittivities of the paper and glass are 2 and 8
respectively. A potential difference of 5 kV is applied
between the plates. Calculate: (a) the capacitance
of the capacitor; (b) the potential gradient in each
dielectric; (c) the total energy stored in the capacitor.
Obtain from first principles an expression for the
capacitance of a single-dielectric, parallel-plate capa-
citor in terms of the plate area, the distance between
plates and the permittivity of the dielectric.

A sheet of mica, 1.0 mm thick and of relative
permittivity 6, is interposed between two parallel
brass plates 3.0 mm apart. The remainder of the space
between the plates is occupied by air. Calculate the
area of each plate if the capacitance between them is
0.001 uF. Assuming that air can withstand a potential
gradient of 3 MV/m, show that a p.d. of 5 kV between
the plates will not cause a flashover.

Explain what is meant by electric field strength in a
dielectric and state the factors upon which it depends.

T'wo parallel metal plates of large area are spaced at

a distance of 10 mm from each other in air, and a p.d.
of 5000 V is maintained between them. If a sheet of
glass, 5.0 mm thick and having a relative permittivity
of 6, is introduced between the plates, what will be the
maximum electric field strength and where will it
occur?
T'wo capacitors of capacitance 0.2 yF and 0.05 uF are
charged to voltages of 100 V and 300 V respectively.
The capacitors are then connected in parallel by
joining terminals of corresponding polarity together.
Calculate: (a) the charge on each capacitor before
being connected in parallel; (b) the energy stored on
each capacitor before being connected in parallel;
(c) the charge on the combined capacitors; (d) the p.d.
between the terminals of the combination; (e) the
energy stored in the combination.
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Exercises 5 continued

217.

28.

29.

30.

31.

32.

33.

A capacitor consists of two metal plates, each 200 mm
% 200 mm, spaced 1.0 mm apart, the dielectric being
air. The capacitor is charged to a p.d. of 100 V and
then discharged through a ballistic galvanometer
having a ballistic constant of 0.0011 microcoulombs
per scale division. The amplitude of the first deflection
is 32 divisions. Calculate the value of the absolute
permittivity of air. Calculate also the electric field
strength and the electric flux density in the air dielec-
tric when the terminal p.d. is 100 V.

When the capacitor of Q. 27 is immersed in oil,
charged to a p.d. of 30 V and then discharged through
the same galvanometer, the first deflection is 27 div-
isions. Calculate: (a) the relative permittivity of the oil;
(b) the electric field strength and the electric flux
density in the oil when the terminal p.d. is 30 V;
(c) the energy stored in the capacitor.

A 20 uF capacitor is charged and discharged thus:

Steady charging current of 0.02 A from 0 t0 0.5 s
Steady charging current of 0.01 A from 0.5to 1.0 s
Zero current from 1.0to 1.5s

Steady discharging current of 0.01 A from 1.5 t0 2.0 s
Steady discharging current of 0.005 A from 2.0t0 4.0 s

Draw graphs to scale showing how the current and
the capacitor voltage vary with time.

Define the time constant of a circuit that includes a
resistor and capacitor connected in series.

A 100 uF capacitor is connected in series with an
800 Q resistor. Determine the time constant of the
circuit. If the combination is connected suddenly to a
100 V d.c. supply, find: (a) the initial rate of rise of p.d.
across the capacitor; (b) the initial charging current;
(c) the ultimate charge in the capacitor; and (d) the
ultimate energy stored in the capacitor.

A 10 uF capacitor connected in series with a 50 kQ
resistor is switched across a 50 V d.c. supply. Derive
graphically curves showing how the charging current
and the p.d. across the capacitor vary with time.

A 2 puF capacitor is joined in series with a 2 MQ
resistor to a d.c. supply of 100 V. Draw a current—time
graph and explain what happens in the period after the
circuit is made, if the capacitor is initially uncharged.
Calculate the current flowing and the energy stored in
the capacitor at the end of an interval of 4 s from the
start.

Derive an expression for the current flowing at any instant
after the application of a constant voltage } to a circuit
having a capacitance C in series with a resistance R.

34.

35.

36.

37.

38.

Determine, for the case in which C=0.01 uF, R =
100 000 € and 7= 1000 V, the voltage to which the
capacitor has been charged when the charging current
has decreased to 90 per cent of its initial value, and the
time taken for the current to decrease to 90 per cent of
its initial value.

Derive an expression for the stored electrostatic
energy of a charged capacitor.

A 10 yF capacitor in series with a 10 kQ resistor
is connected across a 500V d.c. supply. The fully
charged capacitor is disconnected from the supply and
discharged by connecting a 1000 €2 resistor across
its terminals. Calculate: (a) the initial value of the
charging current; (b) the initial value of the discharge
current; and (c) the amount of heat, in joules, dis-
sipated in the 1000 € resistor.

A 20 uF capacitor is found to have an insulation resist-
ance of 50 MCQ, measured between the terminals. If
this capacitor is charged off a d.c. supply of 230 V, find
the time required after disconnection from the supply
for the p.d. across the capacitor to fall to 60 V.

A circuit consisting of a 6 uF capacitor, an electro-
static voltmeter and a resistor in parallel, is connected
across a 140 V d.c. supply. It is then disconnected and
the reading on the voltmeter falls to 70 V in 127 s.
When the test is performed without the resistor,
the time taken for the same fall in voltage is 183 s.
Calculate the resistance of the resistor.

A constant direct voltage of V" volts is applied across
two plane parallel electrodes. Derive expressions for
the electric field strength and flux density in the
field between the electrodes and the charge on the
electrodes. Hence, or otherwise, derive an expression
for the capacitance of a parallel-plate capacitor.

An electronic flash tube requires an energy input

of 8.5 ] which is obtained from a capacitor charged
from a 2000 V d.c. source. The capacitor is to consist
of two parallel plates, 11 cm in width, separated by
a dielectric of thickness 0.1 mm and relative per-
mittivity 5.5. Calculate the necessary length of each
capacitor plate.
An electrostatic device consists of two parallel con-
ducting plates, each of area 1000 cm®. When the plates
are 10 mm apart in air, the attractive force between
them is 0.1 N. Calculate the potential difference
between the plates. Find also the energy stored in the
system. If the device is used in a container filled with
a gas of relative permittivity 4, what effect does this
have on the force between the plates?
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39.

40.

41.

The energy stored in a certain capacitor when con-
nected across a 400 V d.c. supply is 0.3 J. Calculate:
(a) the capacitance; and (b) the charge on the capacitor.
A variable capacitor having a capacitance of 800 pF is
charged to a p.d. of 100 V. The plates of the capacitor
are then separated until the capacitance is reduced to
200 pF. What is the change of p.d. across the capa-
citor? Also, what is the energy stored in the capacitor
when its capacitance is: (a) 800 pF; (b) 200 pF? How
has the increase of energy been supplied?

A 200 pF capacitor is charged to a p.d. of 50 V. The
dielectric has a cross-sectional area of 300 cm” and
a relative permittivity of 2.5. Calculate the energy
density (in J/m?®) of the dielectric.

42,

43.

A parallel-plate capacitor, with the plates 20 mm
apart, is immersed in oil having a relative permittivity
of 3. The plates are charged to a p.d. of 25kV.
Calculate the force between the plates (in newtons per
square metre of plate area) and the energy density
(in J/m®) within the dielectric.

A capacitor consists of two metal plates, each 600 mm
% 500 mm, spaced 1.0 mm apart. The space between
the metal plates is occupied by a dielectric having a
relative permittivity of 6, and a p.d. of 3 kV is main-
tained between the plates. Calculate: (a) the capacit-
ance in picofarads; (b) the electric field strength and
the electric flux density in the dielectric; and (c) the
force of attraction, in newtons, between the plates.



Chapter six Electromagnetism

When you have studied this chapter, you should

¢ have an understanding of magnetic fields and
be able to draw maps using lines of flux

e be familiar with the magnetic fields associated
with conductors and solenoids

e be capable of determining the force experienced
by a current-carrying conductor lying in a
maghnetic field

¢ have an understanding of Fleming’s rules and
Lenz’s law

e be capable of determining the e.m.f. induced in
a conductor moving in a magnetic field
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Maghnitude of e.m.f. induced in a coil 143
Summary of important formulae 145

Terms and concepts 145

Most of us have seen permanent magnets which can pick up pins and other small steel

objects. In this chapter, we shall find that the passage of an electric current in a conductor

produces a similar magnetic field and that, by winding the conductor into a coil, the

magnetic field can be made quite strong. Taking this a stage further, we can also observe

that if we introduce a current-carrying conductor into such a magnetic field, it experiences

a force. If we develop this observation, we can make an electric motor which can drive

things.

In this chapter, we shall meet the essential principle of a generator in that if we move

a conductor through a magnetic field, we find that an e.m.f. is induced in it. This e.m.f.

causes current to flow and so provides us with most of the electric current which we meet

in practice.
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determining distribution of
magnetic field

Direction of
magnetic field

Fig. 6.3 Use of compass
needles for determining
direction of magnetic field

a Characteristics

of lines of
magnetic flux

The first known recognition of magnetism was made by the Chinese in 2637
BC. An emperor, Hoang-ti, is reputed to have had a chariot with a figure-
head which pointed south no matter in what direction the chariot was
moving. This arrangement was developed into the compass and it is even
suggested that it was King Solomon who invented it. The ore from which
the magnet was produced was called magnesian stone, hence the name
magnet.

Nowadays we make compasses from steel, but the action remains the
same. The pointer of a compass is called a permanent magnet because it
always retains its peculiar properties, i.e. if a permanent magnet is suspended
in a horizontal plane, as shown in Fig. 6.1, it takes up a position such that
one end points to the earth’s North Pole. That end is said to be the north-
seeking end of the magnet while the other end is called the south-seeking
end. These are called the north (or N) and south (or S) poles respectively of
the magnet.

Let us place a permanent magnet on a table, cover it over with a sheet of
smooth cardboard and sprinkle steel filings uniformly over the sheet. Slight
tapping of the latter causes the filings to set themselves in curved chains
between the poles, as shown in Fig. 6.2. The shape and density of these
chains enable one to form a mental picture of the magnetic condition of the
space or ‘field’ around a bar magnet and lead to the idea of lines of magnetic
Slux. Tt should be noted, however, that these lines of magnetic flux have
no physical existence; they are purely imaginary and were introduced by
Michael Faraday as a means of visualizing the distribution and density of a
magnetic field. It is important to realize that the magnetic flux permeates the
whole of the space occupied by that flux. This compares with the electric
field lines introduced in Chapter 5.

The direction of a magnetic field is taken as that in which the north-
seeking pole of a magnet points when the latter is suspended in the field.
Thus, if a bar magnet rests on a table and four compass needles are placed in
positions indicated in Fig. 6.3, it is found that the needles take up positions
such that their axes coincide with the corresponding chain of filings
(Fig. 6.2) and their N poles are all pointing along the dotted line from the
N pole of the magnet to its S pole. The lines of magnetic flux are assumed
to pass through the magnet, emerge from the N pole and return to the
S pole.

In spite of the fact that lines of magnetic flux have no physical existence, they
do form a very convenient and useful basis for explaining various magnetic
effects and for calculating their magnitudes. For this purpose, lines of
magnetic flux are assumed to have the following properties:
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m Magnetic field

due to an
electric current

Fig. 6.6 Oersted’s experiment

1. The direction of a line of magnetic flux at any point in a non-magnetic
medium, such as air, is that of the north-seeking pole of a compass needle
placed at that point.

2. Each line of magnetic flux forms a closed loop, as shown by the dotted lines
in Figs 6.4 and 6.5. This means that a line of flux emerging from any
point at the N-pole end of a magnet passes through the surrounding space
back to the S-pole end and is then assumed to continue through the mag-
net to the point at which it emerged at the N-pole end.

3. Lines of magnetic flux never intersect. This follows from the fact that if a
compass needle is placed in a magnetic field, its north-seeking pole will
point in one direction only, namely in the direction of the magnetic flux
at that point.

4. Lines of magnetic flux are like stretched elastic cords, always trying to shorten
themselves. This effect can be demonstrated by suspending two perman-
ent magnets, A and B, parallel to each other, with their poles arranged
as in Fig. 6.4. The distribution of the resultant magnetic field is indicated
by the dotted lines. The lines of magnetic flux passing between A and B
behave as if they were in tension, trying to shorten themselves and
thereby causing the magnets to be attracted towards each other. In other
words, unlike poles attract each other.

5. Lines of magnetic flux which are parallel and in the same direction repel
one another. This effect can be demonstrated by suspending the two
permanent magnets, A and B, with their N poles pointing in the same
direction, as in Fig. 6.5. It will be seen that in the space between A and B
the lines of flux are practically parallel and are in the same direction.
These flux lines behave as if they exerted a lateral pressure on one
another, thereby causing magnets A and B to repel each other. Hence like
poles repel each other.

When a conductor carries an electric current, a magnetic field is produced
around that conductor — a phenomenon discovered by Oersted at
Copenhagen in 1820. He found that when a wire carrying an electric current
was placed above a magnetic needle (Fig. 6.6) and in line with the normal
direction of the latter, the needle was deflected clockwise or anticlockwise,
depending upon the direction of the current. Thus it is found that if we look
along the conductor and if the current is flowing away from us, as shown by
the cross inside the conductor in Fig. 6.7, the magnetic field has a clockwise
direction and the lines of magnetic flux can be represented by concentric
circles around the wire.

We should note the interesting convention for showing the direction of
current flow in a conductor. In Fig. 6.8, we have a conductor in which we
have drawn an arrow indicating the direction of conventional current flow.
However, if we observe the conductor end on, the current would be flowing
either towards us or away from us. If the current is flowing towards us, we
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Fig. 6.8 Current conventions Fig. 6.9 Right-hand screw rule

indicate this by a dot equivalent to the approaching point of the arrow, and
if the current is flowing away then it is represented by a cross equivalent to
the departing tail feathers of the arrow.

A convenient method of representing the relationship between the
direction of a current and that of its magnetic field is to place a corkscrew
or a woodscrew (Fig. 6.9) alongside the conductor carrying the current. In
order that the screw may travel in the same direction as the current, namely
towards the right in Fig. 6.9, it has to be turned clockwise when viewed from
the left-hand side. Similarly, the direction of the magnetic field, viewed from
the same side, is clockwise around the conductor, as indicated by the curved
arrow F.

An alternative method of deriving this relationship is to grip the con-
ductor with the right hand, with the thumb outstretched parallel to the
conductor and pointing in the direction of the current; the fingers then point
in the direction of the magnetic flux around the conductor.

If a coil is wound on a steel rod, as in Fig. 6.10, and connected to a battery,
the steel becomes magnetized and behaves like a permanent magnet. The
magnetic field of the electromagnet is represented by the dotted lines and its
direction by the arrowheads.

The direction of the magnetic field produced by a current in a solenoid
may be deduced by applying either the screw or the grip rule.

If the axis of the screw is placed along that of the solenoid and if
the screw is turned in the direction of the current, it travels in the direction
of the magnetic field inside the solenoid, namely towards the right in
Fig. 6.10.

The grip rule can be expressed thus: if the solenoid is gripped with
the right hand, with the fingers pointing in the direction of the current,
i.e. conventional current, then the thumb outstretched parallel to the
axis of the solenoid points in the direction of the magnetic field inside the
solenoid.
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Force on a
current-carrying
conductor

Fig. 6.11 Force on conductor
carrying current across a
magnetic field

\
C B

Fig. 6.12 Direction of force on
conductor in Fig. 6.11

In section 6.4 it was shown that a conductor carrying a current can produce
a force on a magnet situated in the vicinity of the conductor. By Newton’s
third law of motion, namely that to every force there must be an equal and
opposite force, it follows that the magnet must exert an equal force on the
conductor. One of the simplest methods of demonstrating this effect is to
take a copper wire, about 2 mm in diameter, and bend it into a rectangular
loop as represented by BC in Fig. 6.11. The two tapered ends of the loop
dip into mercury contained in cups, one directly above the other, the cups
being attached to metal rods P and Q carried by a wooden upright rod D. A
current of about 5 A is passed through the loop and the N pole of a per-
manent magnet NS is moved towards B. If the current in this wire is flowing
downards, as indicated by the arrow in Fig. 6.11, it is found that the
loop, when viewed from above, turns anticlockwise, as shown in plan in
Fig. 6.12. If the magnet is reversed and again brought up to B, the loop turns
clockwise.

Variable

resistor

If the magnet is placed on the other side of the loop, the latter turns clock-
wise when the N pole of the magnet is moved near to C, and anticlockwise
when the magnet is reversed. This may seem to be a most awkward method
of demonstrating the interaction between a current-carrying conductor and
a magnetic field. However, it is important to recognize that the action did not
come from two pieces of magnetized steel. By means of the experiment
which had only one piece of steel, we can be certain that the action arose from
the current-carrying conductor.

Being convinced of this observation, we can introduce extra steel com-
ponents in an experiment to explain the effects which we have noted. A
suitable experimental apparatus is shown in elevation and plan in Fig. 6.13.
Two permanent magnets NS rest on a sheet of paper or glass G, and steel
pole-pieces P are added to increase the area of the magnetic field in the
gap between them. Midway between the pole-pieces is a wire W passing
vertically downards through glass G and connected through a switch to a
6 V battery capable of giving a very large current for a short time.

With the switch open, steel filings are sprinkled over G and the latter is
gently tapped. The filings in the space between PP take up the distribution
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Fig. 6.13 Flux distribution
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shown in Fig. 6.13(b). If the switch is closed momentarily, the filings rear-
range themselves as in Fig. 6.13(c). It will be seen that the lines of magnetic
flux have been so distorted that they partially surround the wire. This
distorted flux acts like stretched elastic cords bent out of the straight; the
lines of flux try to return to the shortest paths between PP, thereby exerting
a force F urging the conductor out of the way.

It has already been shown in section 6.4 that a wire W carrying a current
downwards in Fig. 6.13(a) produces a magnetic field as shown in Fig. 6.7. If
this field is compared with that of Fig. 6.13(b), it is seen that on the upper
side the two fields are in the same direction, whereas on the lower side they
are in opposition. Hence, the combined effect is to strengthen the magnetic
field on the upper side and weaken it on the lower side, thus giving the dis-
tribution shown in Fig. 6.13(c).

By combining diagrams similar to Figs 6.13(b) and 6.7, it is easy to
understand that if either the current in W or the polarity of magnets NS is
reversed, the field is strengthened on the lower side and weakened on the
upper side of diagrams corresponding to Fig. 6.13(b), so that the direction of
the force acting on W is the reverse of that shown in Fig. 6.13(c).

On the other hand, if both the current through W and the polarity of the
magnets are reversed, the distribution of the resultant magnetic field and
therefore the direction of the force on W remain unaltered.

By observation of the experiments, it can also be noted that the mechan-
ical force exerted by the conductor always acts in a direction perpendicular
to the plane of the conductor and the magnetic field direction. The direction
is given by the left-hand rule illustrated in Fig. 6.14.
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Fig. 6.14 Left-hand rule

Force
determination

First finger Flux

SeCond
finger
Current

ThuMb Mechanical force

The rule can be summarized as follows:

1. Hold the thumb, first finger and second finger of the left hand in the
manner indicated by Fig. 6.14, whereby they are mutually at right angles.

2. Point the First finger in the Field direction.

3. Point the seCond finger in the Current direction.

4. The thuMb then indicates the direction of the Mechanical force exerted
by the conductor.

By trying this with your left hand, you can readily demonstrate that if
either the current or the direction of the field is reversed then the direction
of the force is also reversed. Also you can demonstrate that, if both current
and field are reversed, the direction of the force remains unchanged.

With the apparatus of Fig. 6.11, it can be shown qualitatively that the force
on a conductor carrying a current at right angles to a magnetic field is
increased (a) when the current in the conductor is increased, and (b) when
the magnetic field is made stronger by bringing the magnet nearer to the con-
ductor. With the aid of more elaborate apparatus, the force on the conductor
can be measured for various currents and various densities of the magnetic
field, and it is found that

Force on conductor o< current X (flux density)
X (length of conductor)

If F is the force on conductor in newtons, / the current through con-
ductor in amperes and / the length, in metres, of conductor at right angles to
magnetic field

F [newtons] o< flux density X / [metres] X [ [amperes]

The unit of flux density is taken as the density of a magnetic field such that a
conductor carrying 1 ampere at right angles to that field has a force of 1 newton
per metre acting upon it. This unit is termed a resla™ ('T).

Magnetic flux density Symbol: B Unit: tesla (T)

* Nikola Tesla (1857-1943), a Yugoslav who emigrated to the USA in 1884, was
a very famous electrical inventor. In 1888 he patented two-phase and three-phase
synchronous generators and motors.
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Example 6.1

Example 6.2

For a flux density of B teslas,

Force on conductor = B/l newtons
F=BII [6.1]

For a magnetic field having a cross-sectional area of .4 square metres and a
uniform flux density of B teslas, the total flux in webers* (Wb) is represented
by the Greek capital letter @ (phi).

Magnetic flux Symbol: @ Unit: weber (Wb)
It follows that,

® [webers] = B [teslas] x A [metres’]

& = BA [6.2]
and B= 2 [6.3]
A
or B [teslas] = & [webers]
A [metres]

ie. 1 T=1Wb/m?

Before we define the unit of magnetic flux, i.e. the weber, we need to intro-
duce the concept of electromagnetic induction.

A conductor carries a current of 800 A at right angles to a magnetic
field having a density of 0.5 T. Calculate the force on the conductor
in newtons per metre length.

From expression [6.1]
F=BII
force per metre length is

0.5[T] x 1[m] x 800 [A] = 400 N

A rectangular coil measuring 200 mm by 100 mm is mounted such
that it can be rotated about the midpoints of the 100 mm sides.
The axis of rotation is at right angles to a magnetic field of uniform
flux density 0.05 T. Calculate the flux in the coil for the following
conditions:

(a) the maximum flux through the coil and the position at which
it occurs;

(b) the flux through the coil when the 100 mm sides are inclined
at 45° to the direction of the flux (Fig. 6.15).

* Wilhelm Eduard Weber (1804-91), a German physicist, was the first to develop
a system of absolute electrical and magnetic units.
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Fig. 6.15

“ Electromagnetic

induction

Direction of
induced e.m.f.

(a) The maximum flux will pass through the coil when the plane of the
coil is at right angles to the direction of the flux.

®=BA=0.05x200x107x 100 x 107 =1x 10~ Wb
=1 mWb
(b) ®=BAsinO=1x10" xsin 45°=0.71 x 107 Wb =0.71 mWb

In 1831, Michael Faraday made the great discovery of electromagnetic induc-
tion, namely a method of obtaining an electric current with the aid of
magnetic flux. He wound two coils, A and C, on a steel ring R, as in Fig. 6.16
and found that, when switch S was closed, a deflection was obtained on
galvanometer G, and that, when S was opened, G was deflected in the reverse
direction. A few weeks later he found that, when a permanent magnet NS was
moved relative to a coil C (Fig. 6.17), galvanometer G was deflected in one
direction when the magnet was moved towards the coil and in the reverse
direction when the magnet was withdrawn; and it was this experiment that
finally convinced Faraday that an electric current could be produced by the
movement of magnetic flux relative to a coil. Faraday also showed that
the magnitude of the induced e.m.f. is proportional to the rate at which the
magnetic flux passed through the coil is varied. Alternatively, we can say that,
when a conductor cuts or is cut by magnetic flux, an e.m.f. is generated in
the conductor and the magnitude of the generated e.m.f. is proportional to
the rate at which the conductor cuts or is cut by the magnetic flux.

Fig. 6.16 FElectromagnetic Fig. 6.17 FElectromagnetic
induction induction

Two methods are available for deducing the direction of the induced or
generated e.m.f., namely (a) Fleming’s* right-hand rule and (b) Lenz’s law.
The former is empirical, but the latter is fundamental in that it is based upon
electrical principles.

* John Ambrose Fleming (1849-1945) was Professor of Electrical Engineering at
University College, London.
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Fig. 6.18
right-hand

Fleming’s
rule

Magnitude of
the generated
or induced e.m.f.

(a) Fleming’s right-hand rule

If the first finger of the right hand is pointed in the direction of the magnetic flux,
as in Fig. 6.18, and if the thumb is pointed in the direction of motion of the con-
ductor relative to the magnetic field, then the second finger, held at right angles
10 both the thumb and the first finger, represents the direction of the e.m.f.

First finger
Flux

ThuMb

Motion of conductor

relative to flux

—_—
SEcond finger
E.M.F.

The manipulation of the thumb and fingers and their association with the
correct quantity present some difficulty to many students. Easy manipula-
tion can be acquired only by experience; and it may be helpful to associate
Field or Flux with First finger, Motion of the conductor relative to the field
with the M in thuMb and e.m.f. with the E in sEcond finger. If any two of
these are correctly applied, the third is correct automatically.

(b) Lenz’s law

In 1834 Heinrich Lenz, a German physicist, enunciated a simple rule, now
known as Lenz’s law, which can be expressed thus: The direction of an induced
e.m.f. is always such that it tends to set up a current opposing the motion or the
change of flux responsible for inducing that e.m.f.

Let us consider the application of Lenz’s law to the ring shown in Fig. 6.16.
By applying either the screw or the grip rule given in section 6.5, we find that
when S is closed and the battery has the polarity shown, the direction of the
magnetic flux in the ring is clockwise. Consequently, the current in C must
be such as to try to produce a flux in an anticlockwise direction, tending to
oppose the growth of the flux due to A, namely the flux which is responsible
for the e.m.f. induced in C. But an anticlockwise flux in the ring would
require the current in C to be passing through the coil from X to Y (Fig. 6.16).
Hence, this must also be the direction of the e.m.f. induced in C.

Figure 6.19 represents the elevation and plan of a conductor AA situated in
an airgap between poles NS. Suppose AA to be carrying a current, / amperes,
in the direction shown. By applying either the screw or the grip rule of sec-
tion 6.4, it is found that the effect of this current is to strengthen the field on
the right and weaken that on the left of A, so that there is a force of B/l new-
tons (section 6.7) urging the conductor towards the left, where B is the flux
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Fig. 6.19 Conductor moved
across magnetic field

density in teslas and / is the length in metres of conductor in the magnetic
field. Hence, a force of this magnitude has to be applied in the opposite
direction to move A towards the right.

The work done in moving conductor AA through a distance 4 metres to
position BB in Fig. 6.19 is (B/I X d) joules. If this movement of AA takes
place at a uniform velocity in # seconds, the e.m.f. induced in the conductor
is constant at, say, £ volts. Hence the electrical power generated in AA is /E
watts and the electrical energy is /Et watt seconds or joules. Since the
mechanical energy expended in moving the conductor horizontally across
the gap is all converted into electrical energy, then

1Et = Blld
B
g Bl
t
and E=Blu [6.4]

where u is the velocity in metres per second. But B/d is the total flux, ®
webers, in the area shown shaded in Fig. 6.19. This flux is cut by the con-
ductor when the latter is moved from AA to BB. Hence

E [volrs] = 2 Lwebers]
¢ [seconds]

i.e. the e.m.f., in volts, generated in a conductor is equal to the rate (in webers
per second) at which the magnetic flux is cutting or being cut by the con-
ductor; and the weber may therefore be defined as that magnetic flux which,
when cut at a uniform rate by a conductor in 1 s, generates an e.m.f. of 1 V.

In general, if a conductor cuts or is cut by a flux of d¢ webers in dz seconds

e.m.f. generated in conductor = d¢/d volts

,_do

=— [6.5]

Calculate the e.m.f. generated in the axle of a car travelling at
80 km/h, assuming the length of the axle to be 2 m and the vertical
component of the earth’s magnetic field to be 40 uT (microteslas).

(80 x 1000) [m]
3600 [s]
u=222m/s

80km/h =

Vertical component of earth’s field is
40x10°T
Flux cut by axle =40 x 10 [T] x 2 [m] X 22.2 [m s]
=1776 x 107° Wb/s
and e.m.f. generated in axle is 1776 X 10° V
e=1780 uv
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Fig. 6.20 Distortion of
magnetic field by induced current

Suppose the magnetic flux through a coil of N turns to be increased by @
webers in ¢ seconds due to, say, the relative movement of the coil and a
magnet (Fig. 6.17). Since each of the lines of magnetic flux cuts each turn,
one turn can be regarded as a conductor cut by @ webers in ¢ seconds; hence,
from expression [6.5], the average e.m.f. induced in each turn is @/ volts.
The current due to this e.m.f., by Lenz’s law, tries to prevent the increase
of flux, i.e. tends to set up an opposing flux. Thus, if the magnet NS in
Fig. 6.17 is moved towards coil C, the flux passing from left to right through
the latter is increased. The e.m.f. induced in the coil circulates a current
in the direction represented by the dot and cross in Fig. 6.20, where — for
simplicity — coil C is represented as one turn. The effect of this current is to
distort the magnetic field as shown by the dotted lines, thereby tending to
push the coil away from the magnet. By Newton’s third law of motion, there
must be an equal and opposite force tending to oppose the movement of the
magnet.

The induced e.m.f. circulates a current tending to oppose the increase of
flux through the coil, hence the average e.m.f. induced in one turn is

(O]
— volts
l

which is the average rate of change of flux in webers per second, and the
average e.m.f. induced in coil is

E volts [6.6]
t

which is the average rate of change of flux-linkages per second. The term
‘flux-linkages’ merely means the product of the flux in webers and the
number of turns with which the flux is linked. Thus if a coil of 20 turns has
a flux of 0.1 Wb through it, the flux-linkages = 0.1 X 20 = 2 weber-turns
(Wb).

The turn is a dimensionless factor, hence the product of webers and turns
is measured only in webers. However, some prefer to retain the term ‘turn’
although this does not conform to the SI.

Flux linkage Symbol: WV (psi) Unit: weber (WD)
Y =NOD

From expression [6.5] it follows that instantaneous value of e.m.f., in
volts, induced in a coil is the rate of change of flux-linkages, in weber-turns
per second, or

e= i(N(])) volts [6.7]
dt
and e= d—w [6.8]

Cdr
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This relationship is usually known as Faraday'’s law, though it was not stated
in this form by Faraday.

From expression [6.6] we can define the weber as that magnetic flux which,
linking a circuit of one turn, induces in it an e.m.f. of 1 V when the flux is reduced
to zero at a uniform rate in 1 s.

Next, let us consider the case of the two coils, A and C, shown in
Fig. 6.16. Suppose that when switch S is closed, the flux in the ring increases
by @ webers in  seconds. Then, if coil A has N, turns, average e.m.f. induced
in Ais

N®
t

volts

This e.m.f., in accordance with Lenz’s law, is acting in opposition to
the e.m.f. of the battery, thereby trying to prevent the growth of the
current.

If coil C is wound with N, turns, and if all the flux produced by coil A
passes through C, average e.m.f. induced in C is

N,®
l

volts

In this case the e.m.f. circulates a current in such a direction as to tend to
set up a flux in opposition to that produced by the current in coil A, thereby
delaying the growth of flux in the ring.

In general, if the magnetic flux through a coil increases by d¢ webers in
dr seconds e.m.f. induced in coil is

N - d_¢) volts
dr
d¢
=N—1- 6.7
e o [6.7]

A magnetic flux of 400 uWb passing through a coil of 1200 turns is
reversed in (.1 s. Calculate the average value of the e.m.f. induced in
the coil.

The magnetic flux has to decrease from 400 yWb to zero and then
increase to 400 Wb in the reverse direction; hence the increase of flux in the
original direction is 800 uWb.

Substituting in expression [6.6], we have

_ NO
!

E

average e.m.f. induced in coil is

1200 x (800 x 107
0.1

=96V
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Summary of important
formulae

Terms and concepts

Exercises 6

1. A current-carrying conductor is situated at right

Force on a conductor

F=BIl (newtons) [6.1]
Flux ® = B4 (webers) [6.2]
Flux density B=®/A4 (teslas) [6.3]
Induced e.m.f.
E=Blu (volts) [6.4]
hence e= % [6.5]
dt
d
or e=—(No¢) [6.7]
dt

A magnetic field can be described using lines of flux. Such lines form
closed loops, do not cross and, when parallel, repel one another.

Magnetic fields have north and south poles. Like poles repel one
another. Unlike poles attract one another.

A current-carrying conductor lying in a magnetic field experiences a
force.

The relative directions of the field, force and current are given by the
left-hand rule.

When the magnetic flux linking a circuit is varied, an e.m.f. is induced in
the circuit. This is known as Faraday’s law.

The induced e.m.f. opposes the change of condition. This is known as
Lenz’s law.

The relative directions of the field, motion and induced e.m.f. are given
by the right-hand rule (sometimes known as Fleming’s right-hand rule).

the force on the coil, in newtons, when the current is

angles to a uniform magnetic field having a density of 12 mA.

0.3 T. Calculate the force (in newtons per metre
length) on the conductor when the current is 200 A.

. Calculate the current in the conductor referred to in
Q. 1 when the force per metre length of the conductor
is 15 N.

. A conductor, 150 mm long, is carrying a current of
60 A at right angles to a magnetic field. The force on
the conductor is 3 N. Calculate the density of the field.
. The coil of a moving-coil loudspeaker has a mean
diameter of 30 mm and is wound with 800 turns. It is
situated in a radial magnetic field of 0.5 T. Calculate

5. Explain what happens when a long straight conductor

is moved through a uniform magnetic field at constant
velocity. Assume that the conductor moves perpen-
dicularly to the field. If the ends of the conductor are
connected together through an ammeter, what will
happen?

A conductor, 0.6 m long, is carrying a current of
75 A and is placed at right angles to a magnetic field
of uniform flux density. Calculate the value of the flux
density if the mechanical force on the conductor is

30 N.
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Exercises 6 continued

6.

10.

State Lenz’s law.

A conductor, 500 mm long, is moved at a uniform
speed at right angles to its length and to a uniform
magnetic field having a density of 0.4 'T. If the e.m.f.
generated in the conductor is 2 V and the conductor
forms part of a closed circuit having a resistance of
0.5 Q, calculate: (a) the velocity of the conductor in
metres per second; (b) the force acting on the con-
ductor in newtons; (c¢) the work done in joules when
the conductor has moved 600 mm.

. A wire, 100 mm long, is moved at a uniform speed of

4 m/s at right angles to its length and to a uniform
magnetic field. Calculate the density of the field if the
e.m.f. generated in the wire is 0.15 V. If the wire forms
part of a closed circuit having a total resistance of
0.04 Q, calculate the force on the wire in newtons.

. Give three practical applications of the mechanical

force exerted on a current-carrying conductor in a
magnetic field.

A conductor of active length 30 cm carries a cur-
rent of 100 A and lies at right angles to a magnetic
field of density 0.4 T. Calculate the force in newtons
exerted on it. If the force causes the conductor to move
at a velocity of 10 m/s, calculate (a) the e.m.f. induced
in it and (b) the power in watts developed by it.

. The axle of a certain motor car is 1.5 m long. Calculate

the e.m.f. generated in it when the car is travelling at
140 km/h. Assume the vertical component of the
earth’s magnetic field to be 40 uT.

An aeroplane having a wing span of 50 m is flying
horizontally at a speed of 600 km/h. Calculate the

11.

12,

13.

14.

15.

e.m.f. generated between the wing tips, assuming the
vertical component of the earth’s magnetic field to be
40 uT. Is it possible to measure this e.m.f.?

A copper disc, 250 mm in diameter, is rotated at
300 r/min about a horizontal axis through its centre
and perpendicular to its plane. If the axis points
magnetic north and south, calculate the e.m.f. between
the circumference of the disc and the axis. Assume
the horizontal component of the earth’s field to be
18 uT.

A coil of 1500 turns gives rise to a magnetic flux of
2.5mWb when carrying a certain current. If this
current is reversed in 0.2 s, what is the average value
of the e.m.f. induced in the coil?

A short coil of 200 turns surrounds the middle of a
bar magnet. If the magnet sets up a flux of 80 uWb,
calculate the average value of the e.m.f. induced in the
coil when the latter is removed completely from the
influence of the magnet in 0.05 s.

The flux through a 500-turn coil increases uniformly
from zero to 200 yWDb in 3 ms. It remains constant for
the fourth millisecond and then decreases uniformly to
zero during the fifth millisecond. Draw to scale a
graph representing the variation of the e.m.f. induced
in the coil.

Two coils, A and B, are wound on the same ferromag-
netic core. There are 300 turns on A and 2800 turns
on B. A current of 4 A through coil A produces a flux
of 800 uWb in the core. If this current is reversed in
2() ms, calculate the average e.m.f.s induced in coils A
and B.
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e be familiar with B/H characteristics and be capable of
applying them to the analysis of simple magnetic circuits 7.8

¢ be capable of relating magnetomotive force to magnetic flux by
means of reluctance

Having found that we can produce a magnetic field using a current-carrying conductor
and that we can make the field stronger by winding the conductor into a coil, we find that
it would be useful if we could produce an even stronger magnetic field. If we place a piece
of steel within a coil, we find that the field becomes hundreds of times stronger. This is
essential to the manufacture of motors and other electrical devices and therefore we need
to understand the effect of the steel.

Our investigation leads to an introduction to permeability, the magnetic field’s
equivalent to permittivity in electric fields.
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n Introduction

to magnetic
circuits

Fig. 7.1 A toroid

E Magnetomotive

force and
magnetic field
strength

In Chapter 6, we observed that one of the characteristics of lines of magnetic
flux is that each line forms a closed loop. For instance, in Fig. 7.1, the
dotted lines represent the flux set up within a ring made of steel. The com-
plete closed path followed by any group of magnetic flux lines is referred
to as a magnetic circuit. One of the simplest forms of magnetic circuit is the
ring shown in Fig. 7.1 where the steel ring provides the space in which the
magnetic flux is created. Most rings are made like anchor rings in that their
cross-section is circular — such a ring is called a toroid.

N turns

I metres

In an electric circuit, the current is due to the existence of an electromotive
force. By analogy, we may say that in a magnetic circuit the magnetic flux is
due to the existence of a magnetomotive force (m.m.f.) caused by a current
flowing through one or more turns. The value of the m.m.f. is proportional
to the current and to the number of turns, and is descriptively expressed in
ampere-turns; but for the purpose of dimensional analysis, it is expressed
in amperes, since the number of turns is dimensionless. Hence the unit of
magnetomotive force is the ampere.

Magnetomotive force Symbol: F* Unit: ampere (A)

Sometimes the unit of magnetomotive force is shown as ampere turns
abbreviated as At. This does not conform to the SI but some people find it
helpful.

If a current of 7 amperes flows through a coil of N turns, as shown in
Fig. 7.1, the magnetomotive force F is the fotal current linked with the mag-
netic circuit, namely /N amperes. If the magnetic circuit is homogeneous
and of uniform cross-sectional area, the magnetomotive force per metre
length of the magnetic circuit is termed the magnetic field strength and is
represented by the symbol H. Thus, if the mean length of the magnetic
circuit of Fig. 7.1 is / metres,

H=IN/I amperes per metre [7.1]

Magnetic field strength Symbol: H Unit: ampere per metre (A/m)
Again this unit is sometimes given in ampere-turns per metre (At/m)

and H=§

where  F=NI amperes [7.2]
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n Permeability of

free space or
magnetic constant

Fig. 7.2 Magnetic field at 1 m
radius due to current in a long
straight conductor

Suppose conductor A in Fig. 7.2 to represent the cross-section of a long
straight conductor, situated in a vacuum and carrying a current of 1 A
towards the paper, and suppose the return path of this current to be some
considerable distance away from A so that the effect of the return current
on the magnetic field in the vicinity of A may be neglected. The lines of
magnetic flux surrounding A will, by symmetry, be in the form of concentric
circles, and the dotted circle D in Fig. 7.2 represents the path of one of these
lines of flux at a radius of 1 m. Since conductor A and its return conductor
form one turn, the magnetomotive force acting on path D is 1 A; and since
the length of this line of flux is 277 metres, the magnetic field strength, H, at
a radius of 1 m is 1/(2m) amperes per metre.

If the flux density in the region of line D is B teslas, it follows from
expression [6.1] that the force per metre length on a conductor C (parallel
to A) carrying 1 A at right angles to this flux is given by

Force per metre length = B [T]x 1 [m] x 1 [A] = B newtons

But from the definition of the ampere given in section 2.7 this force is
2% 107 N, therefore flux density at 1 m radius from conductor carrying 1 A is

B=2x107T
Hence
Flux density at C _ B _2x107[T]
Magnetic field strengthat C ~ H  1/27 [A/m]

=47 x 107 H/m

The ratio B/ H is termed the permeability of free space and is represented by
the symbol y,. Thus

Permeability of free space Symbol: i1, Unit: henry per metre (H/m)

Uy = o [7.3]

The value of this is almost exactly the same whether the conductor A is
placed in free space, in air or in any other non-magnetic material such as
water, oil, wood, copper, etc.

The unit of permeability is the henry per metre which is abbreviated to
H/m. We will explain this unit after having been introduced to inductance
in Chapter 8.

Returning to the permeability of free space

Uy = — for a vacuum and non-magnetic materials
" H

Uy =47 x 107 H/m [7.4]
and magnetic field strength for non-magnetic materials is

B B
H="—

= g1 amperes per metre [7.5]
Ho T X
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Example 7.1

Example 7.2

It may be mentioned at this point that there is a definite relationship between
Uy, € and the velocity of light and other electromagnetic waves; thus

1 1
o€y, 4 x 107 x 8.85 x 10712

= (2.998 x 10°)?

But the velocity of light = 2.998 x 10® metres per second

=8.99 x 10"

Velocity of light =

metres per second [7.6]

1
\/(.Uofo)

This relationship was discovered by James Clerk Maxwell in 1865 and
enabled him to predict the existence of radio waves about twenty years before
their effect was demonstrated experimentally by Heinrich Hertz.

A coil of 200 turns is wound uniformly over a wooden ring having a
mean circumference of 600 mm and a uniform cross-sectional area
of 500 mm?. If the current through the coil is 4.0 A, calculate

(a) the magnetic field strength;
(b) the flux density;
(c) the total flux.

(a) Mean circumference = 600 mm = 0.6 m.
H=4x%200/0.6=1330 A/m
(b) From expression [7.3]:
Flux density = uyH =47 x 107 x 1333
=0.001 675 T =1680 uT
(c) Cross-sectional area = 500 mm®* = 500 x 107° m*

Total flux = 1675 [1T] X (500 x 107°) [m*] = 0.838 uWb

Calculate the magnetomotive force required to produce a flux of
0.015 Wb across an airgap 2.5 mm long, having an effective area of
200 cm’.

Area of airgap = 200 X 107*=0.02 m*

.01
Flux density = 0.015[Wo] =075T
0.02 [m*]
From expression [7.5]:
. 0.75
Magnetic field strength for gap = ——— = 597000 A/m
4 x 107

Length of gap = 2.5 mm = 0.0025 m
therefore m.m.f. required to send flux across gap is
597 000 [A/m] x 0.0025 [m] = 1490 A
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m Relative

permeability

Fig. 7.3 Magnetization
characteristics of soft-magnetic
materials

It can be shown that the magnetic flux inside a coil is intensified when a steel
core is inserted. It follows that if the non-magnetic core of a toroid, such as
that shown in Fig. 7.1, is replaced by a steel core, the flux produced by a
given m.m.f. is greatly increased; and the ratio of the flux density produced in
a material to the flux density produced in a vacuum (or in a non-magnetic core)
by the same magnetic field strength is termed the relative permeability and is
denoted by the symbol 4,.

Any form of steel produces an increase in flux density for a given
magnetic field strength. The same observation can be made of all ferromag-
netic materials, i.e. those which contain iron, cobalt, nickel or gadolinium.
Steels contain iron and are the most common form of ferromagnetic
material. For air, g, = 1, but for some forms of nickel-iron alloys the
relative permeability can be 100 000.

The value of the relative permeability of a ferromagnetic material is not a
constant. Instead it varies considerably for different values of the magnetic
field strength, and it is usually convenient to represent the relationship
between the flux density and the magnetic field strength graphically as in
Fig. 7.3; and the curves in Figs 7.4 and 7.5 represent the corresponding
values of the relative permeability plotted against the magnetic field strength
and the flux density respectively.

From expression [7.3], B = u,H for a non-magnetic material; hence, for
a material having a relative permeability p,,

B=uu H [7.7]
B(T)
2.0 Silicon steel
1.75 - Mild steel
1.5
1.25 A
1.0
075 - Cast iron
Mumetal
0.5 l /
Ferrite
0.25 4
H (A/m)

T T T T T
1000 | 3000 | 5000 | 7000 | 9000 |
2000 4000 6000 8000 10000
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Fig. 7.4 u./H characteristics i,
for soft-magnetic materials
4000
Mild steel
3000
2000
Mumetal
1000
Silicon steel
Ferrite +7
N Casti
ast iron
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soft-magnetic materials T .
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s =
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=] <
S} =
o O
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120 000
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where absolute permeability

u::uour
B=uH

[7.8]
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E Reluctance

n ‘Ohm’s law for

a magnetic
circuit’

Let us consider a ferromagnetic ring having a cross-sectional area of 4 square
metres and a mean circumference of / metres (Fig. 7.1), wound with N turns
carrying a current / amperes, then total flux (®P) = flux density X area

®=BA [7.9]

and m.m.f. (F') = magnetic field strength X length.

F=Hi [7.10]
Dividing equation [7.9] by [7.10], we have
® B4
F - Hi - :ur:ul) /
o=—1
HopeA
F
where —= ! =) [7.11]
¢ MOIJ“rA

S is the reluctance of the magnetic circuit where
F=®S [7.12]

/

and S =
‘u'O:u'r A

[7.13]

The unit of reluctance is the ampere per weber, abbreviated to A/ Wb, as
in fact equation [7.11] indicates.

Reluctance Symbol: .S Unit: ampere per weber (A/Wb)

It is useful here to compare the calculation of the reluctance of a magnetic
circuit with the calculation of the resistance of an electric circuit. The resis-
tance of a conductor of length /, cross-sectional area -4 and resistivity p is
given by equation [3.16]:

R=pl/A
Since electrical conductivity o= 1/p, the expression for R can be rewritten as:
R=1/04

This is very similar indeed to equation [7.13], for the reluctance .S, except
permeability U (= tyL,) replaces 0. For both electrical and magnetic circuits,
increasing the length of the circuit increases the opposition to the flow of
electric current or magnetic flux. Similarly, decreasing the cross-sectional
area of the electric or magnetic circuit decreases the opposition to the flow of
electric current or magnetic flux.

Equation [7.12] can thus be regarded as ‘Ohm’s law for a magnetic circuit’,
since the m.m.f. (F'), the total number of ampere-turns (= N/) acting on the
magnetic circuit:
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Table 7.1 Analogy between d.c.
electric circuit and magnetic

circuit

Example 7.3

m.m.f. = flux X reluctance
F=0S
or NI=®dS

It is clear that m.m.f. (/) is analogous to e.m.f. (£) and flux (®) is analogous
to current (/) in a d.c. resistive circuit, where

e.m.f. = current X resistance

E=1IR

The laws of resistors in series or parallel also hold for reluctances. For
example, note how the reluctances of the three different parts of the mag-
netic circuit in Example 7.4 can be added, like resistors in series. However,
a big difference between electrical resistance R and magnetic reluctance .S is that
resistance is associated with an energy loss (the rate is /*R) whereas reluc-
tance is not. Magnetic fluxes take leakage paths whereas electric currents
normally do not.

Another difference is that, as the e.m.f. is increased in an electric circuit,
the current will likewise increase. Over a wide range of current densities, the
increase in current is directly proportional to the increase in e.m.f. because
conductivity o'is constant. This proportionality changes only when the cur-
rent density reaches such a high value that the conductor becomes hot. In a
magnetic circuit, the relative permeability L, is not constant, as Fig. 7.4 has
shown. As we increase the m.m.f. in the circuit, the flux density will increase
but not in direct proportion to the applied m.m.f.

It is helpful to tabulate the comparison between d.c. resistive and mag-
netic circuits. Table 7.1 makes useful analogies between electric and mag-
netic circuit quantities.

Electric circuit Magnetic circuit
Ohm’s law: V"= 1R ‘Ohm’s law’: F = DS
Electromotive force volt Magnetomotive force ampere (turn)
(e.m.f) V' (m.m.f)) ' (=NI)
Current / amp Magnetic flux @ weber
Conductivity o siemens Permeability u henry per metre
Resistance R =//0A4 ohm Reluctance R =//uA ampere (turn)
per weber
Electric field strength £ volt per metre  Magnetic field ampere (turn)
strength A per metre
Current density 7 amps per m’ Magnetic flux tesla
density B

A mild-steel ring having a cross-sectional area of 500 mm? and a
mean circumference of 400 mm has a coil of 200 turns wound uni-
formly around it. Calculate:

(a) the reluctance of the ring;

(b) the current required to produce a flux of 800 tWb in the ring.
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Example 7.4

(a) Flux density in ring is

800 x 10 [Wb]

1.6T
500 x 107 [m™2]

From Fig. 7.5, the relative permeability of mild steel for a flux density of
1.6 T is about 380. Therefore reluctance of ring is
0.4

=1.68 x10°A/Wb
380 x 47 x 107 x5 %x107*

(b) From expression [7.11]

o=L
S
800 x 1076 = _mmf
1.677 x 10°

m.m.f. F=1342 A

and magnetizing current is

F_B%_ (A
N 200

Alternatively, from expression [7.5],
B 1.6
oty 380 x 4 x 1077
m.m.f. = 3350 x 0.4 =1340 A

and magnetizing current is

1340
200

=3350 A/m

6.7A

Magnetic circuits have an equivalent to the potential difference of electric
circuits. This is the magnetic potential difference which allows us to apply
Kirchhoff’s laws to magnetic circuit analysis. This is demonstrated by
Example 7.4.

A magnetic circuit comprises three parts in series, each of uniform
cross-sectional area (c.s.a.). They are:

(a) alength of 80 mm and c.s.a. 50 mm?,
(b) a length of 60 mm and c.s.a. 90 mm?,
(c) an airgap of length 0.5 mm and c.s.a. 150 mm?.

A coil of 4000 turns is wound on part (b), and the flux density in
the airgap is 0.30 T. Assuming that all the flux passes through the
given circuit, and that the relative permeability i, is 1300, estimate
the coil current to produce such a flux density.
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m Determination

of the B/H
characteristic

Fig. 7.6 Determination of
the magnetization curve for a
steel ring

®=BA=03x1.5x10"*=045x10"*Wb
,
Mot A,
0.45x 107 x 80 x 10~
T 4 <107 x 1300 X 50 X 10°°
b
Mo, Ay
0.45 x 107 x 60 x 10~
T 4 %107 x 1300 X 90 x 10°°
A
Mo, A,
0.45x 10 x 0.5 x 10~
T4 %107 x1x150 X 10°°
F=F+FR+F=441+184+119.3=181.8At=IN
1818

I=——=454x10"A=454mA
4000

E=0S,=®-

=44.1At

F=0S5=0-

=18.4At

E=0S,=0-

=119.3At

(a) By means of a fluxmeter

Figure 7.6 shows a steel ring of uniform cross-section, uniformly wound
with a coil P, thereby eliminating magnetic leakage. Coil P is connected to a
battery through a reversing switch RS, an ammeter A and a variable resistor R,.
Another coil S, which need not be distributed around the ring, is connected
through a two-way switch K to fluxmeter F which is a special type of
permanent-magnet moving-coil instrument. Current is led into and out of the
moving coil of F by fine wires or ligaments so arranged as to exert negligible
control over the position of the moving coil. When the flux in the ring is varied,
the e.m.f. induced in S sends a current through the fluxmeter and produces
a deflection that is proportional to the change of flux-linkages in coil S.

The current through coil P is adjusted to a desired value by means of R,
and switch RS is then reversed several times to bring the steel into a ‘cyclic’
condition, i.e. into a condition such that the flux in the ring reverses from a
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certain value in one direction to the same value in the reverse direction.
During this operation, switch K should be on d, thereby short-circuiting
the fluxmeter. With switch RS on, say, a, switch K is moved over to c, the
current through P is reversed by moving RS quickly over to b and the
fluxmeter deflection is noted.

If NV, is the number of turns on coil P, / the mean circumference of the ring,
in metres, and / the current through P, in amperes, the magnetic field strength is

IN,
H= TP amperes per metre

If 6 is the fluxmeter deflection when current through P is reversed and ¢
the fluxmeter constant = no. of weber-turns per unit of scale deflection,

Change of flux-linkages with coil S = ¢0 [7.14]

If the flux in the ring changes from ® to —® when the current through
coil P is reversed, and if Ny is the number of turns on S, change of flux-
linkages with coil S is

Change of flux X no. of turns on S = 2 ®Ng [7.15]
Equating [7.14] and [7.15], we have
2ONg=c0
so that

cO

2Ng

o = webers

If A is the cross-sectional area of the ring in square metres

(o}
Flux density in ring = B = ;

B cO
2AN

teslas [7.16]

The test is performed with different values of the current; and from the
data a graph representing the variation of flux density with magnetic field
strength can be plotted, as in Fig. 7.3.

(b) By means of a ballistic galvanometer

A ballistic galvanometer has a moving coil suspended between the poles of a
permanent magnet, but the coil is wound on a non-metallic former, so that
there is very little damping when the coil has a resistor of high resistance in
series. The first deflection or ‘throw’ is proportional to the number of
coulombs discharged through the galvanometer if the duration of the dis-
charge is short compared with the time of one oscillation.

If Ois the first deflection or ‘throw’ of the ballistic galvanometer when the
current through coil P is reversed and 4, the ballistic constant of the gal-
vanometer, equals quantity of electricity in coulombs per unit deflection, then
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Quantity of electricity through galvanometer = £60  coulombs
[7.17]

If @ is the flux produced in ring by / amperes through P and 7 the time,
in seconds, of reversal of flux, average e.m.f. induced in S is

20
Ng X — volts
t

If R is the total resistance of the secondary circuit, the quantity of elec-
tricity through a ballistic galvanometer is average current X time which is

20N, 20N,
Sxit= 2 S coulombs [7.18]

IR

Equating [7.17] and [7.18], we have

0 = 20N
R
kOR
b= webers

S

The values of the flux density, etc. can then be calculated as already
described for method (a).

Comparison of

electromagnetic It may be helpful to compare the terms and symbols used in electrostatics
and electrostatic terms with the corresponding terms and symbols used in electromagnetism (see
Table 7.2).
Table 7.2
Electrostatics Electromagnetism
Term Symbol Term Symbol
Electric flux 0 Magnetic flux [}
Electric flux density D Magnetix flux density B
Electric field strength E Magnetic field strength H
Electromotive force E Magnetomotive force F
Electric potential difference Magnetic potential difference —
Permittivity of free space € Permeability of free space W
Relative permittivity €, Relative permeability U,
Absolute permittivity Absolute permeability
_electric flux density _ magnetic flux density
electric field strength magnetic field strength

ie. g, =€=D/E ie. U, =pH=B/H
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Summary of important

Magnetomotive force

formulae
F= NI (amperes or ampere-turns) [7.2]
Magnetic field strength
H=F/l=NI/I (amperes per metre) [7.1]

Flux density

B=u-H (teslas) [7.7]

Permeability of free space

Uy=47x 107 (henrys per metre) [7.4]

Reluctance of a magnetic circuit

S=F/®
s=—1
Mol A

Terms and concepts

[7.12]

[7.13]

A magnetic flux is created by a magnetomotive force.

The magnetic field strength is the m.m.f. gradient at any point in a field.

The magnetic field strength and the flux density at any point in a
field are related by the permeability of the material in which the
magnetic field is created.

The ratio of the permeability to that of free space is termed the relative
permeability. For ferromagnetic materials, the relative permeability
varies according to the magnetic field strength.

The variation of flux density with magnetic field strength is illustrated by
the magnetization characteristic (or B/ H curve).

The reluctance of a magnetic circuit is the ratio of the magnetomotive

force to the flux.

Exercises 7

Data of B/H, when not given in question, should be taken
from Fig. 7.3.

1. A mild steel ring has a mean diameter of 160 mm and
a cross-sectional area of 300 mm?. Calculate: (a) the
m.m.f. to produce a flux of 400 uWb; and (b) the
corresponding values of the reluctance of the ring and
of the relative permeability.

2. A steel magnetic circuit has a uniform cross-sectional

area of 5 cm” and a length of 25 cm. A coil of 120 turns
is wound uniformly over the magnetic circuit. When
the current in the coil is 1.5 A, the total flux is
0.3 mWb; when the current is 5 A, the total flux is
0.6 mWb. For each value of current, calculate: (a) the
magnetic field strength; (b) the relative permeability of
the steel.
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Exercises 7 continued

3.

A mild steel ring has a mean circumference of 500 mm
and a uniform cross-sectional area of 300 mm?’.
Calculate the m.m.f. required to produce a flux of
500 uWb. An airgap, 1.0 mm in length, is now cut in
the ring. Determine the flux produced if the m.m.f.
remains constant. Assume the relative permeability
of the mild steel to remain constant at 220.

. A steel ring has a mean diameter of 15 cm, a cross-

section of 20 cm’ and a radial airgap of 0.5 mm cut in
it. The ring is uniformly wound with 1500 turns of
insulated wire and a magnetizing current of 1 A pro-
duces a flux of 1 mWb in the airgap. Neglecting the
effect of magnetic leakage and fringing, calculate: (a)
the reluctance of the magnetic circuit; (b) the relative
permeability of the steel.

. (a) A steel ring, having a mean circumference of

750 mm and a cross-sectional area of 500 mm’ is
wound with a magnetizing coil of 120 turns. Using the
following data, calculate the current required to set up
a magnetic flux of 630 yWb in the ring.

Flux density (T) 09 1.1 12
Magnetic field
strength (A/m) 260 450 600 820

1.3

(b) The airgap in a magnetic circuit is 1.1 mm long
and 2000 mm® in cross-section. Calculate: (i) the
reluctance of the airgap; and (ii) the m.m.f. to send a
flux of 700 microwebers across the airgap.

. A magnetic circuit consists of a cast steel yoke which

has a cross-sectional area of 200 mm?” and a mean length
of 120 mm. There are two airgaps, each (0.2 mm long.
Calculate: (a) the m.m.f. required to produce a flux of
0.05 mWb in the airgaps; (b) the value of the relative
permeability of cast steel at this flux density. The mag-
netization curve for cast steel is given by the following:

B(T) 01 02 03 04
H(A/m) 170 300 380 460

. An electromagnet has a magnetic circuit that can be

regarded as comprising three parts in series: A, a
length of 80 mm and cross-sectional area 60 mm?*; B,
a length of 70 mm and cross-sectional area 80 mm?;
C, an airgap of length 0.5 mm and cross-sectional area
60 mm* Parts A and B are of a material having
magnetic characteristics given by the following table:

H(A/m) 100 210 340 500 800 1500
B (T) 02 04 06 08 1.0 12

Determine the current necessary in a coil of 4000
turns wound on part B to produce in the airgap a flux
density of 0.7 T. Magnetic leakage may be neglected.

8.

10.

11.

A certain magnetic circuit may be regarded as con-
sisting of three parts, A, B and C in series, each one
of which has a uniform cross-sectional area. Part A has
a length of 300 mm and a cross-sectional area of
450 mm?. Part B has a length of 120 mm and a cross-
sectional area of 300 mm?. Part C is an airgap 1.0 mm
in length and of cross-sectional area 350 mm?’.
Neglecting magnetic leakage and fringing, determine
the m.m.f. necessary to produce a flux of 0.35 mWb in
the airgap. The magnetic characteristic for parts A and
B is given by:

H (A/m)
B (T)

400 560 800
0.7 085 1.0

1280
1.15

1800
1.25

. A magnetic circuit made of silicon steel is arranged as

in Fig. A. The centre limb has a cross-sectional area
of 800 mm’ and each of the side limbs has a cross-
sectional area of 500 mm’. Calculate the m.m.f.
required to produce a flux of 1 mWb in the centre
limb, assuming the magnetic leakage to be negligible.

i LV A N

: A A :

i mm |
340 150 340
mm Tmm mm

| = :

N R V. /!

Fig. A

A magnetic core made of mild steel has the dimensions
shown in Fig. B. There is an airgap 1.2 mm long in
one side limb and a coil of 400 turns is wound on the
centre limb. The cross-sectional area of the centre
limb is 1600 mm? and that of each side limb is 1000
mm?’. Calculate the exciting current required to pro-
duce a flux of 1000 uWb in the airgap. Neglect any
magnetic leakage and fringing.

Poo22050 PAp€ - 3
A r----- vy
250 — 1 |
mm ' 1
12 vl v 400, o
AT A [ K
250 T Lo
mm g, e— .
N e [ VAR .

Fig. B

An electromagnet with its armature has a core length
of 400 mm and a cross-sectional area of 500 mm?.
There is a total airgap of 1.8 mm. Assuming a leakage
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Exercises 7 continued

12,

13.

14.

factor of 1.2, calculate the m.m.f. required to produce
a flux of 400 Wb in the armature. Points on the B/H
curve are as follows:

Flux density (T) 0.8 1.0
Magnetic field strength (A/m) 800 1000

1.2
1600

Define the ampere in terms of SI units.

A coil P of 300 turns is uniformly wound on a

ferromagnetic ring having a cross-sectional area of
500 mm* and a mean diameter of 400 mm. Another
coil S of 30 turns wound on the ring is connected to a
fluxmeter having a constant of 200 microweber-turns
per division. When a current of 1.5 A through P is
reversed, the fluxmeter deflection is 96 divisions.
Calculate: (a) the flux density in the ring; and (b) the
magnetic field strength.
The magnetization curve of a ring specimen of steel is
determined by means of a fluxmeter. The specimen,
which is uniformly wound with a magnetizing winding
of 1000 turns, has a mean length of 65 cm and a cross-
sectional area of 7.5 cm”. A search coil of 2 turns is
connected to the fluxmeter, which has a constant of
0.1 mWb-turn per scale division. When the magnetiz-
ing current is reversed, the fluxmeter deflection is
noted, the following table being the readings which are
obtained:

Magnetizing current
(amperes)
Fluxmeter deflection

02 04 06 08 1.0

17.8 13.2 38.0 42.3 44.7

(divisions)

Explain the basis of the method and calculate the
values of the magnetic field strength and flux density
for each set of readings.

A ring specimen of mild steel has a cross-sectional
area of 6 cm’ and a mean circumference of 30 cm.
It is uniformly wound with two coils, A and B, having
90 turns and 300 turns respectively. Coil B is con-
nected to a ballistic galvanometer having a constant of
1.1 x 107 coulomb per division. The total resistance
of this secondary circuit is 200 000 €2. When a current
of 2.0 A through coil A is reversed, the galvanometer

15.

16.

17.

18.

19.

gives a maximum deflection of 200 divisions. Neglect-
ing the damping of the galvanometer, calculate the flux
density in the steel and its relative permeability.

Two coils of 2000 and 100 turns respectively are
wound uniformly on a non-magnetic toroid having
a mean circumference of 1 m and a cross-sectional
area of 500 mm”. The 100-turn coil is connected to
a ballistic galvanometer, the total resistance of this
circuit being 5.1 kQ. When a current of 2.5 A in the
2000-turn coil is reversed, the galvanometer is
deflected through 100 divisions. Neglecting damping,
calculate the ballistic constant for the instrument.

A long straight conductor, situated in air, is carrying
a current of 500 A, the return conductor being far
removed. Calculate the magnetic field strength and the
flux density at a radius of 80 mm.

(a) The flux density in air at a point 4) mm from
the centre of a long straight conductor A is 0.03 T.
Assuming that the return conductor is a considerable
distance away, calculate the current in A.

(b) In a certain magnetic circuit, having a length
of 500 mm and a cross-sectional area of 300 mm?
an m.m.f. of 200 A produces a flux of 400 uWhb.
Calculate: (i) the reluctance of the magnetic circuit;
and (ii) the relative permeability of the core.

Two long parallel conductors, spaced 40 mm between
centres, are each carrying a current of 5000 A. Calculate
the force in newtons per metre length of conductor.
Two long parallel conductors P and Q, situated in
air and spaced 8 cm between centres, carry currents of
600 A in opposite directions. Calculate the values of
the magnetic field strength and of the flux density at
points A, B and C in Fig. C, where the dimensions are
given in centimetres. Calculate also the values of the
same quantities at the same points if P and Q are each
carrying 600 A in the same direction.
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Having set up a magnetic circuit, we need some measure of our success. Have we achieved
a good magnetic field or is it rather mediocre? Our factor of success is termed the
inductance and, in this chapter, we shall explore the applications of inductance. The most
important application lies in relating the efficiency of a magnetic circuit to the induction
of an e.m.f. in a circuit. Other applications relate the inductance to the dimensions of a
coil and to the ferromagnetic nature of that coil.

Also we have seen that an electrostatic field can store energy and that such storage takes
time to build up or to decay. We shall find that a similar set of activities can be observed
in electromagnetic fields. These observations will be used in later chapters to explain that
the response of electric circuits cannot be instantaneous when changes occur and these are
important when we investigate alternating currents.

Finally we shall find that two coils can interact with one another giving rise to the
concept of mutual inductance. This principle will be developed to explain the action of
transformers which are the backbone of the alternating electrical supplies found
throughout the country.
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m Inductive and

non-inductive
circuits

Fig. 8.1 Inductive and
non-inductive circuits

Time —>

Fig. 8.2 Variation of switch-on
and switch-off currents

Most readers are likely to find that they do not require to give more con-
sideration to the electromagnetic field than has been covered by Chapter 7.
Those who have interests in communications systems or in electrical
machines will require more informed coverage, some of which appears in
Sections Two and Three respectively of this text.

However, every reader will become involved with the induced e.m.f.
created by electromagnetic fields in electrical circuits. This chapter is
therefore devoted to the circuits affected by electromagnetic fields as distinct
from the electromagnetic fields themselves.

Let us consider what happens when a coil L. (Fig. 8.1) and a resistor R,
connected in parallel, are switched across a battery B; L consists of a large
number of turns wound on a steel core D (or it might be the field winding
of a generator or motor) and R is connected in series with a centre-zero
ammeter A,.

S

s/ @ b
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In the analysis which follows, capital symbols are used to indicate quantities
which do not vary and lower-case symbols are used to denote variable quantities.

Although ideally a conductor has no resistance, in practice the length
of conductor wire used to make a coil is such that the coil has an effective
resistance. We will need to recognize this resistance in the experiment which
we are now observing.

When switch S is closed, it is found that the current 7/, through R
increases almost instantly to its final value. The current 7; through L takes an
appreciable time to grow. This is indicated in Fig. 8.2. Eventually the final
current /; is given by

/= battery voltage I/
resistance of coil L

In Fig. 8.2, I, is shown as being greater than /; — this is only to keep them
apart on the diagram, but they could have been equal or /; could have been
greater than 7,.

When S is opened, current through L. decreases comparatively slowly,
but the current through R instantly reverses its direction and becomes the
same current as 7,; in other words the current of L is circulating round R.

Let us now consider the reason for the difference in the behaviour of the
currents in L. and R.

The growth of current in L. is accompanied by an increase of flux — shown
dotted — in the steel core D. But it has been pointed out in section 6.8 that
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\ A

N

Fig. 8.3 Non-inductive resistor

-

Unit of
inductance

any change in the flux linked with a coil is accompanied by an e.m.f. induced
in that coil, the direction of which — described by Lenz’s law — is always
such as to oppose the change responsible for inducing the e.m.f., namely
the growth of current in L. In other words the induced e.m.f. is acting in
opposition to the current and, therefore, to the applied voltage. In circuit R,
the flux is so small that its induced e.m.f. is negligible.

When switch S is opened, the currents in both L. and R tend to decrease;
but any decrease of 7, is accompanied by a decrease of flux in D and therefore
by an e.m.f. induced in L in such a direction as to oppose the decrease of 7.
Consequently the induced e.m.f. is now acting in the same direction as the
current. But it is evident from Fig. 8.1 that after S has been opened, the only
return path for the current of L is that via R; hence the reason why 7, and 7,
are now one and the same current.

If the experiment is repeated without R, it is found that the growth of 7,
is unaffected, but when S is opened there is considerable arcing at the switch
due to the maintenance of the current across the gap by the e.m.f. induced
in L. The more quickly S is opened, the more rapidly does the flux in D
collapse and the greater is the e.m.f. induced in L. This is the reason why it
is dangerous to break quickly the full excitation of an electromagnet such as
the field winding of a d.c. machine.

Any circuit in which a change of current is accompanied by a change of
flux, and therefore by an induced e.m.f., is said to be inductive or to possess
self-inductance or merely inductance. It is impossible to have a perfectly non-
inductive circuit, i.e. a circuit in which no flux is set up by a current; but for
most purposes a circuit which is not in the form of a coil may be regarded as
being practically non-inductive — even the open helix of an electric fire is
almost non-inductive. In cases where the inductance has to be reduced to the
smallest possible value — for instance, in resistance boxes — the wire is bent
back on itself, as shown in Fig. 8.3, so that the magnetizing effect of the cur-
rent in one conductor is neutralized by that of the adjacent conductor. The
wire can then be coiled round an insulator without increasing the inductance.

The unit of inductance is termed the /enry, in commemoration of a famous
American physicist, Joseph Henry (1797-1878), who, quite independently,
discovered electromagnetic induction within a year after it had been dis-
covered in Britain by Michael Faraday in 1831. A circuit has an inductance of
1 henry (or 1 H) if an e.m.f. of 1 volt is induced in the circuit when the current
varies uniformly at the rate of 1 ampere per second. If either the inductance or
the rate of change of current is doubled, the induced e.m.f. is doubled. Hence
if a circuit has an inductance of L henrys and if the current increases from i,
to 7, amperes in ¢ seconds the average rate of change of current is

=1

amperes per second
and average induced e.m.f. is
7

L X rate of change of current = L X Al volts [8.1]
t

Self-inductance Symbol: L Unit: henry (H)
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Considering instantaneous values, if di = increase of current, in amperes, in
time d¢ seconds, rate of change of current is

di
m amperes per second
l

and e.m.f. induced in circuit is

L- ﬂ volts
dr
di
1.e. e=L-— 8.2
& [8.2]

While this term gives the magnitude of the e.m.f., there remains the prob-
lem of polarity. When a force is applied to a mechanical system, the system
reacts by deforming, or mass-accelerating or dissipating or absorbing energy.
A comparable state exists when a force (voltage) is applied to an electric
system, which accelerates (accepts magnetic energy in an inductor) or dis-
sipates energy in heat (in a resistor). The comparable state to deformation is
the acceptance of potential energy in a capacitor which was dealt with in
Chapter 5. In the case of a series circuit containing resistance and inductance
then

v=Ri+L~ﬂ
dr

There are now two schools of thought as to how to proceed. One says
v=vpte;
The other says
V=vp €
=vpt 7
This requires that
e=-L- ﬂ
dr

The first method suggests that the only voltage to be measured is a com-

ponent of the voltage applied and this is
v, =+L- ﬂ
dt

Both arguments are acceptable and the reader will find both systems have
wide application. Although the International Electrotechnical Commission
prefer the second method, for the purposes of this text the positive version
will be used.

It will be noted that the positive version of the relation appears to be more
logical in a circuit diagram. In Fig. 8.4, both versions are considered. If the
induced e.m.f. is taken as an effective volt drop, it may be represented by
an arrow pointing upwards. If the negative version is used, the arrow must
point in the direction of the current flow.
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Fig. 8.4 Polarity of em.f. ina
circuit diagram

Example 8.1

a Inductance in

terms of flux-
linkages per ampere

O (o
V Ve V Ve
R R
di
=V, =1=
er L & L I
o =19
L dr
o o

This interpretation of the diagram arises from the intention that we
clearly identify active circuit components which are sources of e.m.f. as
distinct from inactive circuit components which provide only volt drops.
Active components include batteries, generators and (because they store
energy) inductors and capacitors. A charged capacitor can act like a battery
for a short period of time and a battery possesses an e.m.f. which, when the
battery is part of a circuit fed from a source of voltage, acts against the
passage of current through it from the positive terminal to the negative
terminal, i.e. the process whereby a battery is charged. An inductor opposes
the increase of current in it by acting against the applied voltage by means of
an opposing e.m.f.

When the e.m.f. opposes the increase of current in the inductor, energy is
taken into the inductor. Similarly, when the e.m.f. opposes the decrease of
current in the inductor, energy is supplied from the inductor back into the
electric circuit.

If the current through a coil having an inductance of 0.5 H is reduced
from 5A to 2A in 0.05s, calculate the mean value of the e.m.f.
induced in the coil.
Average rate of change of current is
L—-1, 2-5
! 0.05
From equation [8.1] average e.m.f. induced in coil is

0.5 % (—=60)=-30 V

The direction of the induced e.m.f. is opposite to that of the current, oppos-
ing its decrease.

=—-60A/s

Suppose a current of 7/ amperes through a coil of NV turns to produce a flux
of @ webers, and suppose the reluctance of the magnetic circuit to remain
constant so that the flux is proportional to the current. Also, suppose the
inductance of the coil to be L henrys.
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If the current is increased from zero to / amperes in ¢ seconds, the aver-
age rate of change of current is

— amperes per second
t

LI
Average e.m.f. induced in coil = —  volts [8.3]
t

In section 6.10, it was explained that the value of the e.m.f., in volts,
induced in a coil is equal to the rate of change of flux-linkages per second.
Hence, when the flux increases from zero to @ webers in / seconds,

o
Average rate of change of flux = — webers per second
t

and
NO
Average e.m.f. induced in coil = —  volts [8.4]
13

Equating expressions [8.3] and [8.4], we have

LI No
t !
NO
L= Na henrys = flux-linkages per ampere [8.5]

Considering instantaneous values, if d¢ is the increase of flux, in webers,
due to an increase di amperes in dz seconds

d
Rate of change of flux = d_q) webers per second
!

and Induced em.f. = N - % volts

d¢
dr

e =

[8.6]

Equating expressions [8.2] and [8.6], we have

L 4y de
dr dr

_n. 390
L=N-— [8.7]

_ change of flux linkages

change of current
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Example 8.2

For a coil having a magnetic circuit of constant reluctance, the flux is
proportional to the current; consequently, d¢/d: is equal to the flux per
ampere, so that

L = flux-linkages per ampere
(¢
L =——henrys [8.5]

This expression gives us an alternative method of defining the unit of
inductance, namely: a coil possesses an inductance of 1 henry if a current of 1
ampere through the coil produces a flux-linkage of 1 weber-turn.

A coil of 300 turns, wound on a core of non-magnetic material, has
an inductance of 10 mH. Calculate:

(a) the flux produced by a current of 5 A;
(b) the average value of the e.m.f. induced when a current of 5 A
is reversed in 8§ ms (milliseconds).

(a) From expression [8.5]:

10 % 107 =300 x /5
®=0.167x 10° Wb = 167 uWb

(b) When a current of 5 A is reversed, the flux decreases from 167 uWb
to zero and then increases to 167 uWb in the reverse direction, therefore
change of flux is 334 yWb and average rate of change of flux is

AD 334 x10°°

- 8x100 =0.04175Wb/s
t X )

therefore average e.m.f. induced in coil is

NAA—CD =0.04175 %300 =12.5V
t

Alternatively, since the current changes from 5 to —5 A, average rate of
change of current is
Al 5x2

A__WZIZSOA/S
t X

Hence, from expression [8.2], average e.m.f. induced in coil is

L% =0.01x (1250) =125V
l

The sign is positive because the e.m.f. is acting in the direction of the
original current, at first trying to prevent the current decreasing to zero and
then opposing its growth in the reverse direction.
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m Factors

determining the
inductance of a coil

Magnetic [ 7. _______ C
flux .

'
'
'
'
'
'
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'
'
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'
1

A

Magnetizing
current

Fig. 8.5 Variation of magnetic
flux with magnetizing current for
a closed ferromagnetic circuit

Let us first consider a coil uniformly wound on a non-magnetic ring of
uniform section — similar to that of Fig. 7.1. From expression [7.5], it follows
that the flux density, in teslas, in such a ring is 477 X 107 X the magnetic
field strength, in amperes per metre. Consequently, if /is the length of the
magnetic circuit in metres and A its cross-sectional area in square metres,
then for a coil of NV turns with a current / amperes:

From expression [7.1]:

IN
Magnetic field strength = e
and Total flux=®=BA=u,HA
1
=47x 107 x TNA

Substituting for @ in expression [8.5] we have

2
Inductance = L = 47 x 107 X

henrys [8.8]

Hence the inductance is proportional to the square of the number of turns
and to the cross-sectional area, and is inversely proportional to the length of
the magnetic circuit.

If the coil is wound on a closed ferromagnetic core, such as a ring, the
problem of defining the inductance of such a coil becomes involved due to
the fact that the variation of flux is no longer proportional to the variation
of current. Suppose the relationship between the magnetic flux and the
magnetizing current to be as shown in Fig. 8.5, then if the core has initially
no residual magnetism, an increase of current from zero to OA causes the
flux to increase from zero to AC, but when the current is subsequently
reduced to zero, the decrease of flux is only DE. If the current is then
increased to OG in the reverse direction, the change of flux is EJ. Con-
sequently, we can have an infinite number of inductance values, depending
upon the particular variation of current that we happen to consider.

Since we are usually concerned with the effect of inductance in an a.c.
circuit, where the current varies from a maximum in one direction to the
same maximum in the reverse direction, it is convenient to consider the value
of the inductance as being the ratio of the change of flux-linkages to the
change of current when the latter is reversed. Thus, for the case shown in
Fig. 8.5:

D
Inductance of coil = —(J} X number of turns

This value of inductance is the same as if the flux varied linearly along the
dotted line COH in Fig. 8.5.

If 1, represents the value of the relative permeability corresponding to the
maximum value AC of the flux, then the inductance of the steel-cored coil,
as defined above, is (1, times that of the same coil with a non-magnetic core.
Hence, from expression [8.8], we have inductance of a ferromagnetic-cored
coil (for reversal of flux) is
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Inductance

Current

Fig. 8.6 Inductance of a
ferromagnetic-cored coil

2

L=47r><10‘7><AN

X W, henrys [8.9]

The variations of relative permeability with magnetic field strength for
various qualities of steel are shown in Fig. 7.4; hence it follows from ex-
pression [8.9] that as the value of an alternating current through a coil having
a closed steel circuit is increased, the value of the inductance increases to a
maximum and then decreases, as shown in Fig. 8.6. It will now be evident
that when the value of the inductance of such a coil is stated, it is also
necessary to specify the current variation for which that value has been
determined.
From expression [8.9]:
2

L (henrys) = t i, X A (metres”) X —————

/ (metres)

L (henrys) X [ (metres)
N? x A (metres?)

Absolute permeability = (U, =

hence the units of absolute permeability are henrys per metre (or H/m), e.g.
Lo=4mx 107 H/m.

A ring of mild steel stampings having a mean circumference of
400 mm and a cross-sectional area of 500 mm’ is wound with
200 turns. Calculate the inductance of the coil corresponding to a
reversal of a magnetizing current of:

(a) 2A;
(b) 10 A.
(@) HZEZZ[A]XZOO[turnS]ZIOOOA/m
/ 0.4 [m]
From Fig. 7.3:

Corresponding flux density = 1.13 T
Total flux ® = BA =1.13 [T] x 0.0005 [m*] = 0.000 565 Wb

From expression [8.5]:
NO
Inductance L = a = (0.000 565 x 200)/2 = 56.6 mH

) = NI _ 10 [A] % 200 [turns] 5000 A/m
/ 0.4 [m]

From Fig. 7.3:
Corresponding flux density B =1.63 T
Total flux @ = 1.63 x 0.0005 = 0.000 8§15 Wb

and Inductance L = g =(0.000 815 x 200)/10 =16.3 mH
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Example 8.4

Ferromagnetic-
cored inductor
in a d.c. circuit

Magnetic flux

(6] Magnetizing current

Fig. 8.7 Effect of inserting an
airgap in a ferromagnetic core

If a coil of 200 turns is wound on a non-magnetic core having the
same dimensions as the mild steel ring for Example 8.3, calculate its
inductance.

From expression [8.8] we have
(47 x 107) [H/m] x 0.0005 [m* ] X (200)? [turns’ ]
0.4 [m]

Inductance =

=0.000 062 8 H
=62.8 uH

A comparison of the results from Examples 8.3 and 8.4 for a coil of the
same dimensions shows why a ferromagnetic core is used when a large
inductance is required.

An inductor (i.e. a piece of apparatus used primarily because it possesses
inductance) is frequently used in the output circuit of a rectifier to smooth
out any variation (or ripple) in the direct current. If the inductor was made
with a closed ferromagnetic circuit, the relationship between the flux and the
magnetizing current would be represented by curve OBD in Fig. 8.7. It will
be seen that if the current increases from OA to OC, the flux increases from
AB to CD. If this increase takes place in ¢ seconds, then average induced
e.m.f. is number of turns X rate of change of flux:

r=nNA2
At
E=N X M volts [8.10]

t

Let L be the incremental inductance of the coil over this range of flux
variation, i.e. the effective value of the inductance when the flux is not
proportional to the magnetizing current and varies over a relatively small
range, then average induced e.m.f. is

L% (OC -04)
!

volts [8.11]

Equating expressions [8.10] and [8.11], we have
L, (OC - 0A) N x (CD - AB)

t t

Ls = N x €D - AB [8.12]
OC - OA

= N X average slope of curve BD

From Fig. 8.7 it is evident that the slope is very small when the core is
saturated. This effect is accentuated by hysteresis (section 44.7); thus if the
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Growth in an
inductive circuit

current is reduced from OC to OA, the flux decreases from CD only to AE,
so that the effective inductance is still further reduced.

If a short radial airgap were made in the ferromagnetic ring, the flux pro-
duced by current OA would be reduced to some value AF. For the reduced
flux density in the core, the total m.m.f. required for the ferromagnet and the
gap is approximately proportional to the flux; and for the same increase
of current, AC, the increase of flux = CG — AF. As (CG — AF) may be
much greater than (CD — AB), we have the curious result that the effective
inductance of a ferromagnetic-cored coil in a d.c. circuit may be increased by
the introduction of an airgap.

An alternative method of increasing the flux-linkages per ampere and
maintaining this ratio practically constant is to make the core of compressed
magnetic dust, such as small particles of ferrite or nickel-iron alloy, bound
by shellac. This type of coil is used for ‘loading’ telephone lines, i.e. for
inserting additional inductance at intervals along a telephone line to improve
its transmission characteristics.

Expression [8.12] indicates that the inductance L of a magnetic system
need not be a constant. It follows that if  can vary with time then expression
[8.2] requires to be stated as

d(Li)

dr
It can be shown that this expands to give
di . dL

e=L - —+i —
dr dr

It is for this reason that inductance is no longer defined in terms of the rate
of change of current since this presumes that the inductance is constant,
which need not be the case in practice.

It is interesting to note that the energy conversion associated with - di/d¢
is stored in the magnetic field yet the energy associated with the other term
is partially stored in the magnetic field, while the remainder is converted to
mechanical energy which is the basis of motor or generator action.

A laminated steel ring is wound with 200 turns. When the magnet-

-

izing current varies between 5 and 7 A, the magnetic flux varies
between 760 and 800 uWb. Calculate the incremental inductance of
the coil over this range of current variation.

From expression [8.12] we have

(800 — 760) x 10
(7-9)

=0.004 H

Ly =200 x

In section 8.1 the growth of current in an inductive circuit was discussed
qualitatively; we shall now consider how to derive the curve showing the
growth of current in a circuit of known resistance and inductance (assumed
constant).
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Fig. 8.8 Inductive circuit

Fig. 8.9 Growth of current in
an inductive circuit

This derivation can be undertaken either graphically or analytically. It is
worth undertaking the graphical approach once and thereafter using the
approach used in section 8.7.

When dealing with an inductive circuit it is convenient to separate the
effects of inductance and resistance by representing the inductance L as that
of an inductor or coil having no resistance and the resistance R as that of a
resistor having no inductance, as shown in Fig. 8.8. It is evident from the latter
that the current ultimately reaches a steady value 7 (Fig. 8.9), where /= V'/R.

Let us consider any instant A during the growth of the current. Suppose
the current at that instant to be / amperes, represented by AB in Fig. 8.9.
The corresponding p.d. across R is Ri volts. Also at that instant the rate of
change of the current is given by the slope of the curve at B, namely the slope
of the tangent to the curve at B.

<~ 7 —> C
R Ty T IR
= =i
?g S8 ,
5 S, D
O /

Time (s)

D -
But the slope of BC = b = !
BD BD

amperes per second.
Hence e.m.f. induced in L at instant A is

i
volts

I —
L X rate of change of current = L X
The total applied voltage /" is absorbed partly in providing the voltage
drop across R and partly in neutralizing the e.m.f. induced in Z, i.e.

I -

V=Ri+Lx
BD

Substituting R/ for V, we have

I -

RI=Ri+ Lx
BD

I
RUI—i)y=1x—"
BD
hence
BD:£
R

In words, this expression means that the rate of growth of current at any
instant is such that if the current continued increasing at that rate, it would
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Fig. 8.10 Graph for
Example 8.6

reach its maximum value of / amperes in L/R seconds. Hence this period is
termed the zzme constant of the circuit and is usually represented by the
symbol 7} i.e.

Time constant= 7T = % seconds [8.13]

Immediately after switch S is closed, the rate of growth of the current is
given by the slope of the tangent OE drawn to the curve at the origin; and if
the current continued growing at this rate, it would attain its final value in
time FE = T seconds.

From expression [8.13] it follows that the greater the inductance and the
smaller the resistance, the larger is the time constant and the longer it takes
for the current to reach its final value. Also this relationship can be used to
derive the curve representing the growth of current in an inductive circuit,
as illustrated by the following example.

A coil having a resistance of 4 2 and a constant inductance of 2 H is
switched across a 20 V d.c. supply. Derive the curve representing the
growth of the current.

From equation [8.13], time constant is

T=£=%=0.55
R 4
Final value of current is
I:K:E:5A
R 4

With the horizontal and vertical axes suitably scaled, as in Fig. 8.10, draw
a horizontal dotted line at the level of 5 A. Along this line mark off a period
MN = 7'=0.5 s and join ON.

Take any point P relatively near the origin and draw a horizontal dotted
line PQ = 7"=0.5 s and at Q draw a vertical dotted line QS. Join PS.

Repeat the operation from a point X on PS, Z on XY, etc.

A curve touching OP, PX| XZ, etc. represents the growth of the current.
The greater the number of points used in the construction, the more
accurate is the curve.

Current (A)
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Fig. 8.11 Growth of current in

Analysis of
growth

an inductive circuit

In the above graphical derivation, if you remember nothing else, always
keep the relationship between the initial gradient and the time constant in
your mind’s eye. It helps in understanding the effect of the mathematical
analysis which follows.

Let us again consider the circuit shown in Fig. 8.8 and suppose  amperes
to be the current 7 seconds after the switch is closed, and di amperes to be
the increase of current in dz seconds, as in Fig. 8.11. Then rate of change of
current is

Current (A)

o |<— t —>| Time (s) t

di
— amperes per second
dr
and induced e.m.f. is
&
LS volts
dt
Since total applied voltage is p.d. across R + induced e.m.f.

di

V=Ri+L — [8.14]
dr
so that
V-Ri=L- a
dr
and r_ 1= L di
R R dt
Vv
But N = final value of current = (say) /
R .
— . dr= di
L I -
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Integrating both sides, we have
R
M =i+ A
L

where A is the constant of integration.
At the instant of closing the switch, =0 and /=0, so that A =1n /|

R
I~ In [8.15]
L
=In ]_
-1
Hence I_lze_%
R
1=I1-¢ ") [8.16]

This exponential relationship is often referred to as the Helmholtz equation.

Immediately after the switch is closed, the rate of change of the current
is given by the slope of tangent OA drawn to the curve at the origin. If the
current continued growing at this initial rate, it would attain its final value,
I amperes, in T seconds, the time constant of the circuit (section 8.6). From
Fig. 8.11 it is seen that initial rate of growth of current is

T amperes per second

At the instant of closing the switch 7 = 0; hence, from expression [8.14],

V= L X initial rate of change of current

.. V
Initial rate of change of current = 7

Hence, i = K
T L
so that
LI L
T = — = — seconds
V' R
L
T=— 8.17
R [8.17]
Substituting for R/L in equation [8.16], we have
i=I1-¢T) [8.18]

Fori=T
1=1(1-0.368) =0.6327

hence the time constant is the time required for the current to attain 63.2 per
cent of its final value.
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DENERA A coil having a resistance of 4 Q2 and a constant inductance of 2 H is
switched across a 20 V d.c. supply. Calculate:

(a) the time constant;
(b) the final value of the current;
(c) the value of the current 1.0 s after the switch is closed.

(a) Time constant is

L 2
—=—=05s
R 4
(b) Final value of current is
Vo20

—=—=50A
R 4

(c) Substituting t=1, 7=0.5sand /=5 A in equation [8.18],
i=5(1— e 15) = 5(1 — ¢?)
e¢?=10.1353
1=5(1-0.1353) =432 A

Analysis

of decay Figure 8.12 represents a coil, of inductance L henrys and resistance R ohms,

in series with a resistor 7 across a battery. The function of 7 is to prevent
the battery current becoming excessive when switch S is closed. Suppose
the steady current through the coil to be / amperes when S is open. Also,
suppose 7 amperes in Fig. 8.13 to be the current through the coil # seconds

I:F after S is closed. Since the external applied voltage J of equation [8.14] is
»

zero as far as the coil is concerned, we have
. di
L 0=Ri+L -—
dt
s
b h d
. 1
Ri=-L -— [8.19]
R dz
T In this expression, d: is numerically negative since it represents a decrease of
current. Hence
Fig. 8.12 Short-circuited
inductive circuit [E) dr = _1 di
L i

Integrating both sides, we have

[£]t=—lni+/]
L

where A is the constant of integration.
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Fig. 8.13 Decay of current in
an inductive circuit

Current (A)

At the instant of closing switch S, =0 and / = /, so that
0=-In7l+A

—
S~

jtzln[—lnizlni

[

Rt
=cl

I
Hence —
i

and  i=let [8.20]

Immediately after S is closed, the rate of decay of the current is given
by the slope of the tangent AB in Fig. 8.13, and initial rate of change of
current is

I
T amperes per second

Also, from equation [8.19], since initial value of 7 is 7, initial rate of change
of current is

7 amperes per second
1
Hence, —=—
L T
so that
T = z = time constant of circuit
namely, the value already deduced in section 8.6.
The curve representing the decay of the current can be derived graph-

ically by a procedure similar to that used in section 8.6 for constructing the
curve representing the current growth in an inductive circuit.
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100V

Transients in

p
10Q

0.1H

UR

Fig. 8.14 Network for
Example 8.8

LR networks

Example 8.8

We have considered the charging and discharging of an inductor through
circuit resistance. In each case, the arrangement has involved a network con-
taining inductance and resistance, hence such a network is known as an LR
network.

As in the CR networks which we considered in section 5.18, it is signi-
ficant to consider the effects of switching on followed by switching off. Once
again the difference in time between switching actions is only important if it
is not greater than five times the time constant given by expression [8.17].
If the time between switching is greater than five times the time constant, the
transient may be considered finished and steady-state conditions can be applied.

In practice, many networks responding to pulsed switching experience a
rate of switching which causes the second transient change to commence
before the first has finished. The effects are best demonstrated by means of
the following examples.

For the network shown in Fig. 8.14:

(a) determine the mathematical expressions for the variation
of the current in the inductor following the closure of the
switch at 7 =0 on to position 1;

(b) when the switch is closed on to position 2 at = 100 ms, deter-
mine the new expression for the inductor current and also for
the voltage across R;

(c) plot the current waveforms for £ =0 to 7 = 200 ms.

(a) For the switch in position 1, the time constant is
L 0.1

1=—=—=10ms

TR0

h=I(1-¢7)= %(1 — ¢ )

=(1 — & i)
(b) For the switch in position 2, the time constant is
L 0.1
Ih=—=—"—-=4ms
R, 10+15

L R

i,=Ilen=1e w07
__t

=€ 107 amperes

The current continues to flow in the same direction as before, therefore the
volt drop across R is negative relative to the direction of the arrow shown in
Fig. 8.14.

__t
v =1,R= —15e +107 volts

The current waveforms are shown in Fig. 8.15.

It will be noted that in the first switching period, five times the time con-
stant is 50 ms. The transient has virtually finished at the end of this time and
it would not have mattered whether the second switching took place then or
later. During the second period, the transient took only 25 ms.
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Fig. 8.15 Current waveforms
for Example 8.8

Example 8.9

Fig. 8.16 Current waveforms
for Example 8.9

i(A)

1.0

0.5

T T T T T T
20 40 60 80 100 120 140 160 180 200 ¢

Time (ms)

For the network shown in Fig. 8.14, the switch is closed on to position
1 as in Example 8.8. However, it is closed on to position 2 when
t = 10 ms. Again determine the current expressions and hence plot
the current waveforms.

For the switch in position 1, the time constant is 10 ms as in Example 8.8,
and the current expression is as before. However, the switch is moved to
position 2 while the transient is proceeding.

When =10 ms

i=(l—e ) =(1-e")=0.632 A

The second transient commences with an initial current in R of 0.632 A.
The current decay is therefore

RN S
5, = 0.632 ¢ +10~° amperes

The current waveforms are shown in Fig. 8.16.

0.5A

Time (ms)

It would be possible to extend such an example by repeatedly switching
the supply on and off. The analysis would be a repetition of either Example
8.8 or 8.9 depending on the rate of switching.

We can also analyse more complex networks by combining the application
of network theorems with exponential expressions. Again, this can be more
readily illustrated by means of an example.
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D ENERMOE  For the network shown in Fig. 8.17, the switch is closed on to position

Fig. 8.17 Network for
Example 8.10

20Q

8- [-

0

Fig. 8.18 For Example 8.10

Fig. 8.19 For Example 8.10

1 when 7=0 and then moved to position 2 when 7=1.5 ms. Determine
the current in the inductor when 7 =2.5 ms.

1 2
1 I O O
1A 20Q
10 mH 200
10Q 10Q
5Q

In order to analyse the transient effect, it is necessary to simplify the
supply network to the inductor by means of Norton’s theorem (Fig. 8.18).
The equivalent resistance is given by

_ (0+2010

.= =75Q
10 +20 + 10
=10 1-033A

10 + 20

Hence the network can be replaced as shown in Fig. 8.19.
The transient current with the switch in position 1 will have a final
current of

= 7 x0.33=0.2A
5+75
At t = 1.5 ms, the inductor current is
i =02(1-¢7)
-3
where 7)= £= wEZ.Oms
R 5

i =02(1—¢2)=0.106 A

—_

o

0.33A

10 mH 200
7.5Q
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Fig. 8.20 Waveform of current
in inductor in Example 8.10

m Energy stored

in an inductor

i(A)

0.10

0.01 t..

Time (ms)

With the switch in position 2,

i,=0.106¢ 7
-3
where 7, = 10107 =0.4 ms
5420
i, =0.106¢ 05
=0.009 A=9mA

The waveform of the current in the inductor is shown in Fig. 8.20.

If the current in a coil having a constant inductance of L henrys grows at
a uniform rate from zero to / amperes in ¢ seconds, the average value of
the current is 3/ and the e.m.f. induced in the coil is (L x 1/1) volts. The
product of the current and the component of the applied voltage to neutralize
the induced e.m.f. represents the power absorbed by the magnetic field
associated with the coil.

Hence average power absorbed by the magnetic field is

LI
I x — watts
t
and total energy absorbed by the magnetic field is

LI

i =1 =
Average power X time = 5/ X ; Xt

1772

Wi=5LI* joules [8.21]

Let us now consider the general case of a current increasing at a uniform

or a non-uniform rate in a coil having a constant inductance L henrys. If the
current increases by di amperes in d¢ seconds

Induced em.f. = L - % volts
!

and if 7 is the value of the current at that instant, energy absorbed by the
magnetic field during time dz seconds is

il - d -dt = Li - di joules
dr

Hence total energy absorbed by the magnetic field when the current
increases from 0 to / amperes is



CHAPTER 8 INDUCTANCE IN A DC CIRCUIT 183

Example 8.11

Lfi-di:Lx%[iz];

0

7
LJ i -di = L1 joules
0

From expression [8.9]
A
L= N2H7

for a homogeneous magnetic circuit of uniform cross-sectional area.
Therefore energy per cubic metre @; is

% ]2 NZ lﬂz — % ‘Ll HZ
2
w,=31HB = L
2 Hol,

This expression has been derived on the assumption that {4, remains con-
stant. When the coil is wound on a closed ferromagnetic core, the variation
of 1, renders this expression inapplicable and the energy has to be determined
graphically, as will be explained in section 44.9. For non-magnetic materials,
U, =1 and the energy stored per cubic metre is 3B/, joules, which will be

developed in section 35.4.

When an inductive circuit is opened, the current has to die away and the
magnetic energy has to be dissipated. If there is no resistor in parallel with
the circuit the energy is largely dissipated as heat in the arc at the switch.
With a parallel resistor, as described in section 8.1, the energy is dissipated
as heat generated by the decreasing current in the total resistance of the
circuit in which that current is flowing.

joules [8.22]

A coil has a resistance of 5 Q and an inductance of 1.2 H. The current
through the coil is increased uniformly from zero to 10 A in 0.2 s,
maintained constant for 0.1 s and then reduced uniformly to zero in
0.3 s. Plot graphs representing the variation with time of:

(a) the current;

(b) the induced e.m.f;

(c) the p.d.s across the resistance and the inductance;
(d) the resultant applied voltage;

(e) the power to and from the magnetic field.

Assume the coil to be wound on a non-metallic core.

The variation of current is represented by graph A in Fig. 8.21: and since
the p.d. across the resistance is proportional to the current, this p.d. increases
from zero to (10 A X 5 Q), namely 50 V, in 0.2 s, remains constant at 50 V
for 0.1 s and then decreases to zero in (.3 s, as represented by graph B.

During the first 0.2 s, the current is increasing at the rate of 10/0.2,
namely 50 A/s,

Corresponding induced e.m.f. =50 x 1.2 =60 V
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Fig. 8.21 Graphs for
Example 8.11
A: current
B: p.d. across resistance
D: induced e.m.f.
E: resultant applied voltage
F: (+) energy absorbed
(=) energy returned

10

—_

=

<
1

1

w

(=]

1

1
Current (A)

Applied p.d.s and induced e.m.f. (V)

0 1 R | 1 1 0
0.1 02 03 04 05
Time (s)
I
. — _
_50 -
100 < 1000
S
=
o
T 50 =500
=
o,
B

Power to magnetic field (W)

=50 =500

During the following 0.1 s, the induced e.m.f. is zero, and during the last
0.3 s, the current is decreasing at the rate of —10/0.3, namely —33.3 A/s,

Corresponding induced e.m.f. =(=33.3 x 1.2)=—40 V

The variation of the induced e.m.f. is represented by the uniformly
dotted graph D in Fig. 8.21.

The resultant voltage applied to the coil is obtained by adding graphs
B and D; thus the resultant voltage increases uniformly from 60 to 110 V
during the first 0.2 s, remains constant at 50 V for the next 0.1 s and then
changes uniformly from 10 to —40 V during the last 0.3 s, as shown by graph
E in Fig. 8.21.

The power supplied to the magnetic field increases uniformly from zero
to (10 A x 60 V), namely 600 W, during the first 0.2 s. It is zero during the
next 0.1 s. Immediately the current begins to decrease, energy is being
returned from the magnetic field to the electric circuit, and the power
decreases uniformly from (—40 V x 10 A), namely —400 W, to zero as repre-
sented by graph F.

The positive shaded area enclosed by graph F represents the energy
(= 3% 600 x 0.2 =60 J) absorbed by the magnetic field during the first 0.2 s;
and the negative shaded area represents the energy (=5 % 400 x 0.3 = 60 J)
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m Mutual

inductance

Fig. 8.22 Mutual inductance

returned from the magnetic field to the electric circuit during the last 0.3 s.
The two areas are obviously equal in magnitude, i.e. all the energy supplied
to the magnetic field is returned to the electric circuit.

If two coils A and C are placed relative to each other as in Fig. 8.22, then,
when S is closed, some of the flux produced by the current in A becomes
linked with C, and the e.m.f. induced in C circulates a momentary current
through galvanometer G. Similarly when S is opened the collapse of the flux
induces an e.m.f. in the reverse direction in C. Since a change of current
in one coil is accompanied by a change of flux linked with the other coil
and therefore by an e.m.f. induced in the latter, the two coils are said to have
mutual inductance.

The unit of mutual inductance is the same as for self-inductance, namely
the henry; and two coils have a mutual inductance of 1 henry if an e.m.f. of 1 volt
is induced in one coil when the current in the other coil varies uniformly at the rate
of 1 ampere per second.

Mutual inductance Symbol: M Unit: henry (H)

If two circuits possess a mutual inductance of A henrys and if the current
in one circuit — termed the primary circuit — increases by di amperes in d¢
seconds, e.m.f. induced in secondary circuit is

M ﬂ volts [8.23]
dt

The induced e.m.f. tends to circulate a current in the secondary circuit
in such a direction as to oppose the increase of flux due to the increase of
current in the primary circuit.

If d¢ webers is the increase of flux linked with the secondary circuit due
to the increase of di amperes in the primary, e.m.f. induced in secondary
circuit is

N, - a9 volts [8.24]
dr

where N, is the number of secondary turns. From expressions [8.23] and [8.24]



186

SECTION 1 ELECTRICAL PRINCIPLES

A B
L] L]

A A
[% ]B

[ [

1 2 34

Fig. 8.23 Mutual inductance

iy de
dt ds

M =N, d—¢ [8.25]
ds

change of flux-linkages with secondary

change of current in primary

If the relative permeability of the magnetic circuit remains constant, the
ratio d¢/d: must also remain constant and is equal to the flux per ampere, so
that

M= flux-linkages with secondary — N,®,

[8.26]

current in primary I

where @, is the flux linked with the secondary circuit due to a current /; in
the primary circuit.

The mutual inductance between two circuits, A and B, is precisely the
same, whether we assume A to be the primary and B the secondary or vice
versa; for instance, if the two coils are wound on a non-metallic cylinder, as
in Fig. 8.23, then, from expression [8.21], energy in the magnetic field due
to current /, in coil A alone is

11,13 joules
and energy in the magnetic field due to current /; in coil B alone is
1Lyl joules

Suppose the current in B to be maintained steady at /; amperes in the
direction shown in Fig. 8.23, and the current in A to be increased by d:
amperes in dz seconds, then

Ny
EMF induced in B = M,, - d—’ volts
!

where M, is the mutual inductance when A is primary.

If the direction of 7, is that indicated by the arrowhead in Fig. 8.23,
then, by Lenz’s law, the direction of the e.m.f. induced in B is anticlockwise
when the coil is viewed from the right-hand end, i.e. the induced e.m.f. is
in opposition to /; and the p.d. across terminals 3 and 4 has to be increased
by My, - di/dr volts to maintain I constant. Hence the additional electrical
energy absorbed by coil B in time d# is

&
IBMu(d—lj X dr = IzM, - di joules
t

Since I remains constant, the 7°R loss in B is unaffected, and there is no
e.m.f. induced in coil A apart from that due to the increase of /,; therefore
this additional energy supplied to coil B is absorbed by the magnetic field.
Hence, when the current in A has increased to /,, total energy in magnetic
field is
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Fig. 8.24 Application of the
dot notation

Ip
TLIA+ 3L I + f IyM,, - di

0

=1L, 05+ T Lyl 5+ M1, Iy joules
If the direction of either /, or I was reversed, the direction of the e.m.f.

induced in B, while the current in A was increasing, would be the same
as that of [j;, and coil B would then be acting as a source. By the time the
current in A would have reached its steady value /,, the energy withdrawn
from the magnetic field and generated in coil B would be M,,1,I}; joules,
and final energy in magnetic field would be

TL I3+ LI — My, 1,1 joules

Hence, in general, total energy in magnetic field is
%LAI§+ %LB]éiMIZIA]B joules [8.27]

the sign being positive when the ampere-turns due to 7, and [ are additive,
and negative when they are in opposition.

If M,, were the mutual inductance with coil B as primary, it could be
shown by a similar procedure that the total energy in the magnetic field is

AL\ I3+ L1y T3 + My, 1,1 joules

Since the final conditions are identical in the two cases, the energies must
be the same,

My Iy Iy = My 11y
or M,y = My, = (say) M

1.e. the mutual inductance between two circuits is the same whichever circuit
is taken as the primary.

When the two coils are shown on a common core, as in Fig. 8.23, it is
obvious that the magnetomotive forces due to 7, and [;; are additive when the
directions of the currents are as indicated by the arrowheads. If, however,
the coils are drawn as in Fig. 8.24, it is impossible to state whether the
magnetomotive forces due to currents /, and 7 are additive or in opposition;
and it is to remove this ambiguity that the dot notation has been adopted.
Thus, in Figs 8.23 and 8.24, dots are inserted at ends 1 and 3 of the coils
to indicate that when currents enter both coils (or leave both coils) at these
ends, as in Fig. 8.24(a), the magnetomotive forces of the coils are additive,

Iy Iy Iy Iy
O > <€ o) o > > to}
1 3 1 3
° °
"2 o 1273 L4

2 A B 4 2
(a) (b)

=
=~}
-
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Coupling
coefficient

and the mutual inductance is then said to be positive. But if 1, enters coil A at
the dotted end and Iy /leaves coil B at the dotted end, as in Fig. 8.24(b), the
m.m.f.s of the coils are in opposition and the mutual inductance is then said
to be negative.

An application of the dot notation is given at the end of section 8.13. A
further application appears in Chapter 13.

Suppose a ring of non-magnetic material to be wound uniformly with two
coils, A and B, the turns of one coil being as close as possible to those of the
other coil, so that the whole of the flux produced by current in one coil is
linked with all the turns of the other coil.
It will be recalled from expression [7.11] that the reluctance S for a
magnetic circuit is given by
G F N
O ()

If coil A has N, turns and B has N, turns, and if the reluctance of the
magnetic circuit is .S amperes per weber, then, from expression [8.5], the
self-inductances of A and B are

_N@®, _ N3, NG

L = = 8.28]
1, IN, S
2
and L,=% N [8.29]
I, S

where @, and @, are the magnetic fluxes due to /, in coil A and 7, in coil B
respectively, and

oo N _ LN,
® @

Since the whole of flux @, due to /, is linked with coil B, it follows from
expression [8.26] that

a2 N NN,
I LN,
NN,

M= 1S 2 8.30]

Hence, from equations [8.28], [8.29] and [8.30],
NiN3

SZ

= M?

L.L, =

sothat M=1\(L,L,) [8.31]
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Example 8.12

m Coils connected

in series

We have assumed that

1. The reluctance remains constant.
2. The magnetic leakage is zero, i.e. that all the flux produced by one coil is
linked with the other coil.

The first assumption means that expression [8.31] is strictly correct only
when the magnetic circuit is of non-magnetic material. It is, however,
approximately correct for a ferromagnetic core if the latter has one or more
gaps of air or non-magnetic material, since the reluctance of such a magnetic
circuit is approximately constant.

When there is magnetic leakage, i.e. when all the flux due to current in
one coil is not linked with the other coil,

M = kN(L,Ly) [8.32]

where £ is termed the coupling coefficient. ‘Coupling coefficient’ is a term
much used in radio work to denote the degree of coupling between two coils;
thus, if the two coils are close together, most of the flux produced by current
in one coil passes through the other and the coils are said to be z1ightly coupled.
If the coils are well apart, only a small fraction of the flux is linked with the
secondary, and the coils are said to be loosely coupled.

A ferromagnetic ring of cross-sectional area 800 mm* and of mean
radius 170 mm has two windings connected in series, one of 500 turns
and one of 700 turns. If the relative permeability is 1200, calculate
the self-inductance of each coil and the mutual inductance of each
assuming that there is no flux leakage.

o 27 x 170 x 1073
ot A 4m x 1077 x 1200 x 800 x 10~
=8.85x10°H
2 2
L =N 0 g oesn
S 885x10°
2 2
L= T _gsm
S 8.85 x10°

M = k(L,L,)? = 1% (0.283 x 0.552)* = 0.395 H

Figure 8.25(a) shows two coils A and B wound coaxially on an insulating
cylinder, with terminals 2 and 3 joined together. It will be evident that the
fluxes produced by a current 7 through the two coils are in the same direction,
and the coils are said to be cumulatively coupled. Suppose A and B to have
self-inductances L, and Ly henrys respectively and a mutual inductance M
henrys, and suppose the arrowheads to represent the positive direction of the
current.
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Fig. 8.25 Cumulative and
differential coupling of two coils
connected in series

A B A B
iA A iA Y
o ° ° L[]
10 4 1¢ 20 b3 o4
2 3
o] o] o]

(a) (b)

If the current increases by di amperes in dz seconds, e.m.f. induced in A
due to its self-inductance is

d&i
Ly - L Volts
dr
and e.m.f. induced in B due to its self-inductance is
&
Ly - < volts
ds
Also, e.m.f. induced in A due to increase of current in B is
d&i
M - & volts
dr

and e.m.f. induced in B due to increase of current in A is
M - 2 volts
dr
Hence total e.m.f. induced in A and B is
&
(Ly + Ly +2M) - <
de

If the windings between terminals 1 and 4 are regarded as a single circuit
having a self-inductance L, henrys, then for the same increase d/ amperes in
dz seconds e.m.f. induced in the whole circuit is

d&i
L, < Volts
dr
But the e.m.f. induced in the whole circuit is obviously the same as the sum
of the e.m.f.s induced in A and B, i.e.
di di
L= (L + Ly +2M) - -
dr dr

Ly=Ly+Ly+2M 8.33]

Let us next reverse the direction of the current in B relative to that in A by
joining together terminals 2 and 4, as in Fig. 8.25(b). With this differential
coupling, the e.m.f.; M - di/d¢, induced in coil A due to an increase di amperes
in dr seconds in coil B, is in the same direction as the current and is therefore
in opposition to the e.m.f. induced in coil A due to its self-inductance. Similarly,
the e.m.f. induced in B by mutual inductance is in opposition to that induced
by the self-inductance of B. Hence, total e.m.f. induced in A and B is
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Example 8.13

Types of
inductor and
inductance

& & di
LA._’+LB._’_2M._'
dt dt dt

If L, is the self-inductance of the whole circuit between terminals 1 and 3

in Fig. 8.25(b), then

di di
L, —=(Ly+ Ly —2M)-—
2 df ( A B ) df
Ly=L,+Ly-2M [8.34]

Hence the total inductance of inductively coupled circuits is
L+ Ly+2M [8.35]

The positive sign applies when the coils are cumulatively coupled, the
mutual inductance then being regarded as positive; the negative sign applies
when they are differentially coupled.

From expressions [8.33] and [8.34], we have

Li-1L,
4

M= [8.36]

i.e. the mutual inductance between two inductively coupled coils is a quar-
ter of the difference between the total self-inductance of the circuit when the
coils are cumulatively coupled and that when they are differentially coupled.

When two coils are connected in series, their effective inductance
is found to be 10.0 H. However, when the connections to one coil
are reversed, the effective inductance is 6.0 H. If the coefficient of
coupling is 0.6, calculate the self-inductance of each coil and the
mutual inductance.

L=L+L,+2M=L,+ L,*2k(L,L,)"*
10=L, + L, + 2k(L,L,)"*
and 6=L,+ L,— 2k(L,L,)"*
8§=L,+1L,
10=8~L,+L,+12(8L,— L})"*
0=L3-8L,+2.78
L,=7.63Hor 0.37H
L,=037Hor7.63H
2M=10-7.63 -0.37
M=1.0H

We have already noted that inductors are devices which promote inductance,
i.e. they are designed to have a great ability to hold magnetic energy. Induc-
tors are generally made to have a fixed value of inductance, but some are vari-
able. The symbols for fixed and variable inductors are shown in Fig. 8.26.
Inductors, unlike resistors and capacitors, cannot be considered as pure
elements. Most resistors can be considered to be purely resistive and likewise
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Inductor

Ferromagnetic-cored Inductor

Variable Inductor

Fig. 8.26 Circuit symbols for
inductors

Summary of important
formulae

most capacitors can be considered to be purely capacitive. Inductors always
introduce inductance but also resistance into a circuit.

Inductance is the ratio of flux-linkages to current, i.e. the flux linking the
turns through which it appears to pass. Any circuit must comprise at least
a single turn, and therefore the current in the circuit sets up a flux which
links the circuit itself. It follows that any circuit has inductance. However,
the inductance can be negligible unless the circuit includes a coil so that
the number of turns ensures high flux-linkage or the circuit is large enough
to permit high flux-linkage. The latter infers a transmission line which is
effectively long.

Inductors always involve coils of conductor wire. Such conductors are
made of wire which cannot be of too large a cross-section. Because the cross-
section is small, the coil resistance is at least a few ohms, but can easily be as
much as a few thousand ohms.

Inductors fall into two categories — those with an air core and those with
a ferromagnetic core. The air core has the advantage that it has a linear B/H
characteristic which means that the inductance L is the same no matter what
current is in the coil. However, the relative permeability of air being 1 means
that the values of inductance attained are very low.

The ferromagnetic core produces very much higher values of inductance,
but the B/ H characteristic is not linear and therefore the inductance L varies
indirectly with the current. However, many of the sintered ferromagnetic
materials have almost linear characteristcs and they are therefore almost
ideal.

There are variable inductors in which the core is mounted on a screw
so that it can be made to move in and out of the coil, thus varying the
inductance.

Like capacitors, the weakness of inductors lies in the insulation. In
particular if the insulation fails and as a result one or more turns of the coil
are short-circuited, the inductance reduces to a value similar to that of an
air-cored inductor. The consequence is that there is little back e.m.f. when
the coil current is varied.

Induced e.m.f.

e=1L- a4 (volts) [8.2]
dt
do
=N -— 8.6
1 [8.6]
Inductance
L=N®/I (webers per ampere, or henrys) [8.5]

The time constant of an LR circuit
T=L/R (seconds) [8.13]
Current rise in an LR circuit

i=1(1- e_%) (amperes) [8.16]
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Summary of important

. Current decay in an LR circuit
formulae continued

o —31
i=1le’

Energy stored in an inductor
Wi=1LI* (joules)

Energy density in a magnetic field

wy =3BH (joules per cubic metre)

EMF induced by mutual inductance
e=M - ﬂ (volts)
dt

Mutual inductance
Ah
I

NN,
s

M=

Coupling coefficient of a mutual inductor

M= kN(L,L,)

Effective inductance of a mutual inductor

L=L +L,+2M

Terms and concepts

[8.20]

[8.21]

[8.22]

[8.23]

8.26]

8.30]

[8.32]

[8.35]

Inductance is a factor of goodness for a magnetic circuit. The higher the
inductance, the better the flux linkage per ampere.

Self-inductance arises when an e.m.f. is induced due to change of flux

linkage created by its associated current.

Whether an e.m.f. is positive or negative depends entirely on the assumed
direction of action. Self-induced e.m.f.s are assumed to act as though

they were load volt drops.

The inductance depends on the number of turns of the energizing coil,
the length and cross-sectional area of the magnetic circuit and the

material from which the magnetic circuit is made.

Ferromagnetic-cored inductors produce significantly higher inductances

than other inductors.

The current in an inductor cannot change instantaneously but has to rise

or fall exponentially.

When a magnetic field is set up by an inductor, it stores energy.

When the magnetic field of one coil links with a second coil, the coils are
said to be mutually linked and they have mutual inductance. How
well they are linked is indicated by the coupling coefficient.
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Exercises 8

1.

A 1500-turn coil surrounds a magnetic circuit which
has a reluctance of 6 x 10° A/Wb. What is the induct-
ance of the coil?

. Calculate the inductance of a circuit in which 30 V are

induced when the current varies at the rate of 200 A/s.

. At what rate is the current varying in a circuit having

an inductance of 50 mH when the induced e.m.f. is

8 V2

. What is the value of the e.m.f. induced in a circuit

having an inductance of 700 uH when the current
varies at a rate of 5000 A/s?

. A certain coil is wound with 50 turns and a current

of 8 A produces a flux of 200 uWb. Calculate: (a) the
inductance of the coil corresponding to a reversal of
the current; (b) the average e.m.f. induced when the
current is reversed in 0.2 s.

. A toroidal coil of 100 turns is wound uniformly on a

non-magnetic ring of mean diameter 150 mm. The
circular cross-sectional area of the ring is 706 mm?®.
Estimate: (a) the magnetic field strength at the inner
and outer edges of the ring when the current is 2 A;
(b) the current required to produce a flux of 0.5 yWb;
(c) the self-inductance of the coil. If the ring had a small
radial airgap cut in it, state, giving reasons, what altera-
tions there would be in the answers to (a), (b) and (c).

. A coil consists of two similar sections wound on a

common core. Each section has an inductance of
0.06 H. Calculate the inductance of the coil when the
sections are connected (a) in series, (b) in parallel.

. A steel rod, 1 cm diameter and 50 cm long, is formed

into a closed ring and uniformly wound with 400 turns
of wire. A direct current of 0.5 A is passed through
the winding and produces a flux density of 0.75 T.
If all the flux links with every turn of the winding,
calculate: (a) the relative permeability of the steel; (b)
the inductance of the coil; (c) the average value of the
e.m.f. induced when the interruption of the current
causes the flux in the steel to decay to 20 per cent of its
original value in 0.01 s.

. Explain, with the aid of diagrams, the terms se/f-

inductance and mutual inductance. In what unit are they
measured? Define this unit.

Calculate the inductance of a ring-shaped coil
having a mean diameter of 200 mm wound on a
wooden core of diameter 20 mm. The winding is
evenly wound and contains 500 turns. If the wooden
core is replaced by a ferromagnetic core which has a
relative permeability of 600 when the current is 5 A,
calculate the new value of inductance.

10.

11.

12,

13.

14.

15.

Name and define the unit of se/f~inductance.

A large electromagnet is wound with 1000 turns. A
current of 2 A in this winding produces a flux through
the coil of 0.03 Wb. Calculate the inductance of the
electromagnet. If the current in the coil is reduced
from 2 A to zero in 0.1 s, what average e.m.f. will be
induced in the coil? Assume that there is no residual
flux.

Explain what is meant by the self-inductance of a coil
and define the practical unit in which it is expressed.

A flux of 0.5 mWb is produced in a coil of 900
turns wound on a wooden ring by a current of 3 A.
Calculate: (a) the inductance of the coil; (b) the
average e.m.f. induced in the coil when a current of
5 A is switched off, assuming the current to fall to zero
in 1 ms; (c) the mutual inductance between the coils, if
a second coil of 600 turns was uniformly wound over
the first coil.

Define the ampere in terms of SI units.

A steel ring, having a mean circumference of
250 mm and a cross-sectional area of 400 mm? is
wound with a coil of 70 turns. From the following data
calculate the current required to set up a magnetic flux
of 510 uWhb.

B(T)
H (A/m)

1.0 1.2
350 600

1.4
1250

Calculate also: (a) the inductance of the coil at this
current; (b) the self-induced e.m.f. if this current
is switched off in 0.005s. Assume that there is no
residual flux.

Explain the meaning of se/f~inductance and define the
unit in which it is measured.

A coil consists of 750 turns and a current of 10 A in
the coil gives rise to a magnetic flux of 1200 uWhb.
Calculate the inductance of the coil, and determine the
average e.m.f. induced in the coil when this current is
reversed in 0.01 s.

Explain what is meant by the self-inductance of an
electric circuit and define the unit of self-inductance.

A non-magnetic ring having a mean diameter
of 300 mm and a cross-sectional area of 500 mm? is
uniformly wound with a coil of 200 turns. Calculate
from first principles the inductance of the winding.
Two coils, A and B, have self-inductances of 120 yH
and 300 uH respectively. When a current of 3 A
through coil A is reversed, the deflection on a flux-
meter connected across B is 600 yWb-turns. Calculate:
(a) the mutual inductance between the coils; (b) the
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Exercises 8 continued

16.

17.

18.

19.

20.

average e.m.f. induced in coil B if the flux is reversed
in 0.1 s; and (c) the coupling coefficient.
A steel ring having a mean diameter of 20 cm and
cross-section of 10 cm? has a winding of 500 turns
upon it. The ring is sawn through at one point, so as to
provide an airgap in the magnetic circuit. How long
should this gap be, if it is desired that a current of 4 A
in the winding should produce a flux density of 1.0 T
in the gap? State the assumptions made in your calcu-
lation. What is the inductance of the winding when a
current of 4 A is flowing through it?

The permeability of free space is 477 X 107 H/m
and the data for the B/ H curve of the steel are given
below:

H(A/m) 190 254 360 525 1020 1530 2230
B (T) 06 08 1.0 1.2 14 15 16

A certain circuit has a resistance of 10 € and a con-
stant inductance of 3.75 H. The current through this
circuit is increased uniformly from 0 to 4 A in 0.6s,
maintained constant at 4 A for 0.1 s and then reduced
uniformly to zero in 0.3s. Draw to scale graphs
representing the variation of (a) the current, (b) the
induced e.m.f. and (c) the resultant applied voltage.
A coil having a resistance of 2 € and an inductance
of 0.5 H has a current passed through it which varies
in the following manner: (a) a uniform change from
zero to 50 A in 1s; (b) constant at 50 A for 1s; (c) a
uniform change from 50 A to zero in 2s. Plot the
current graph to a time base. Tabulate the potential
difference applied to the coil during each of the above
periods and plot the graph of potential difference to a
time base.

A coil wound with 500 turns has a resistance of 2 Q.
It is found that a current of 3 A produces a flux of
500 uWb. Calculate: (a) the inductance and the time
constant of the coil; (b) the average e.m.f. induced in
the coil when the flux is reversed in 0.3 s. If the coil is
switched across a 10 V d.c. supply, derive graphically
a curve showing the growth of the current, assuming
the inductance to remain constant.

Explain the term #ime constant in connection with an
inductive circuit.

A coil having a resistance of 25 Q and an induct-
ance of 2.5 H is connected across a 50 V d.c. supply.
Determine graphically: (a) the initial rate of growth of
the current; (b) the value of the current after 0.15 s;
and (c) the time required for the current to grow to
1.8 A.

21.

22,

23.

24,

25.

26.

The field winding of a d.c. machine has an induc-
tance of 10 H and takes a final current of 2 A when
connected to a 200 V d.c. supply. Calculate: (a) the
initial rate of growth of current; (b) the time con-
stant; and (c) the current when the rate of growth is
5A/s.

A 200V d.c. supply is suddenly switched across a
relay coil which has a time constant of 3 ms. If the
current in the coil reaches 0.2 A after 3 ms, determine
the final steady value of the current and the resistance
and inductance of the coil. Calculate the energy stored
in the magnetic field when the current has reached its
final steady value.

A coil of inductance 4 H and resistance 80 € is in
parallel with a 200 €2 resistor of negligible inductance
across a 200V d.c. supply. The switch connecting
these to the supply is then opened, the coil and
resistor remaining connected together. State, in each
case, for an instant immediately before and for one
immediately after the opening of the switch: (a) the
current through the resistor; (b) the current through
the coil; (c) the e.m.f. induced in the coil; and (d) the
voltage across the coil.

Give rough sketch graphs, with explanatory notes,
to show how these four quantities vary with time.
Include intervals both before and after the opening of
the switch, and mark on the graphs an approximate
time scale.

A circuit consists of a 200 £ non-reactive resistor in
parallel with a coil of 4 H inductance and 100 Q
resistance. If this circuit is switched across a 100 V d.c.
supply for a period of 0.06 s and then switched
off, calculate the current in the coil 0.012 s after the
instant of switching off. What is the maximum p.d.
across the coil?

Define the units of: (a) magnetic flux, and (b)
inductance.

Obtain an expression for the induced e.m.f. and
for the stored energy of a circuit, in terms of its
inductance, assuming a steady rise of current from
zero to its final value and ignoring saturation.

A coil, of inductance 5 H and resistance 100 €,
carries a steady current of 2 A. Calculate the initial
rate of fall of current in the coil after a short-circuiting
switch connected across its terminals has been
suddenly closed. What was the energy stored in the
coil, and in what form was it dissipated?

If two coils have a mutual inductance of 400 uH,
calculate the e.m.f. induced in one coil when the
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Exercises 8 continued

27.

28.

29.

30.

31.

32.

current in the other coil varies at a rate of
30 000 A/s.

Ifan e.m.f. of 5 V is induced in a coil when the current
in an adjacent coil varies at a rate of 80 A/s, what is the
value of the mutual inductance of the two coils?

If the mutual inductance between two coils is (0.2 H,
calculate the e.m.f. induced in one coil when the
current in the other coil is increased at a uniform rate
from 0.5to 3 A'in 0.05 s.

If the toroid of Q . 6 has a second winding of 80 turns
wound over the first winding of 100 turns, calculate
the mutual inductance.

When a current of 2 A through a coil P is reversed,
a deflection of 36 divisions is obtained on a fluxmeter
connected to a coil Q. If the fluxmeter constant is
150 uWb-turns/div, what is the value of the mutual
inductance of coils P and Q ?

Explain the meaning of the terms se/f~inductance and
mutual inductance and define the unit by which each is
measured.

A long solenoid, wound with 1000 turns, has an
inductance of 120 mH and carries a current of 5 A. A
search coil of 25 turns is arranged so that it is linked by
the whole of the magnetic flux. A ballistic galvano-
meter is connected to the search coil and the combined
resistance of the search coil and galvanometer is
200 Q. Calculate, from first principles, the quantity
of electricity which flows through the galvanometer
when the current in the solenoid is reversed.

Define the unit of mutual inductance.

A cylinder, 50 mm in diameter and 1 m long, is
uniformly wound with 3000 turns in a single layer. A
second layer of 100 turns of much finer wire is wound
over the first one, near its centre. Calculate the mutual
inductance between the two coils. Derive any formula
used.

33.

34.

35.

36.

37.

A solenoid P, 1 m long and 100 mm in diameter, is
uniformly wound with 600 turns. A search-coil Q,
30 mm in diameter and wound with 20 turns, is
mounted coaxially midway along the solenoid. If Q is
connected to a ballistic galvanometer, calculate the
quantity of electricity through the galvanometer when
a current of 6 A through the solenoid is reversed. The
resistance of the secondary circuit is 0.1 MQ. Find,
also, the mutual inductance between the two coils.
When a current of 2 A through a coil P is reversed, a
deflection of 43 divisions is obtained on a fluxmeter
connected to a coil Q. If the fluxmeter constant is
150 yWb-turns/div, find the mutual inductance of coils
P and Q. If the self-inductances of P and Q are 5 mH
and 3 mH respectively, calculate the coupling coefficient.
Two coils, A and B, have self-inductances of 20 mH
and 10 mH respectively and a mutual inductance of
5 mH. If the currents through A and B are 0.5 A and
2 A respectively, calculate: (a) the two possible values
of the energy stored in the magnetic field; and (b) the
coupling coefficient.

Two similar coils have a coupling coefficient of 0.25.
When they are connected in series cumulatively,
the total inductance is 80 mH. Calculate: (a) the self-
inductance of each coil; (b) the total inductance when
the coils are connected in series differentially; and
(c) the total magnetic energy due to a current of 2 A
when the coils are connected in series (i) cumulatively
and (i1) differentially.

Two coils, with terminals AB and CD respectively,
are inductively coupled. The inductance measured
between terminals AB is 380 uH and that between
terminals CD is 640 yuH. With B joined to C, the
inductance measured between terminals AD is
1600 uH. Calculate: (a) the mutual inductance of the
coils; and (b) the inductance between terminals AC
when B is connected to D.
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Having already developed quite an extensive understanding of circuits in which the current comes from a
d.c. source such as a battery, we now need to progress to circuits in which the direction of current flow
alternates. In practice most electrical circuits operate in this way and such a current is known as an
alternating current. Almost every electrical supply to houses and to industry uses alternating current.

In order to understand such systems, we need to be familiar with the terms used to analyse alternating
currents. It cannot be said that investigating such terms is the most exciting activity but when you progress
to the application of such terms, you will understand the need to spend some time on the introductory
mathematics. Fortunately most alternating systems operate on a sinusoidal basis and this helps to simplify
our approach.

Sinusoidal waveforms are tricky things to draw and fortunately we shall find that when we use phasor
diagrams we can represent them by straight lines. By joining up such lines, we can undertake apparently
difficult additions and subtractions, and this simplifies the later analyses which we shall be considering.

Please remember that this chapter is a means to an end — it is the foundation for things yet to come.
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m ARternating

systems

Fig. 9.1 Alternating current
waveforms

m Generation of

an alternating
e.m.f.

In previous chapters we have considered circuits and networks in which the
current has remained constant, i.e. direct current systems, or those in which
the current has varied for a short period of time, i.e. transient systems.
However, there remains another type of system — the alternating system — in
which the magnitudes of the voltage and of the current vary in a repetitive
manner. Examples of such repetitive currents are shown in Fig. 9.1.

A current which varies after the fashion suggested in Fig. 9.1 is known as
an alternating current. It flows first in one direction and then in the other.
The cycle of variation is repeated exactly for each direction.

Sinusoidal wave Square wave Triangular wave

Alternating current can be abbreviated to a.c., hence a system with such
an alternating current is known as an a.c. system. The curves relating
current to time are known as waveforms. Those shown in Fig. 9.1 are simple
waveforms, but waveforms can be quite complicated as shown in Fig. 9.5.

Of the waveforms shown in Fig. 9.1, the sinusoidal example is the most
important. At this stage, the most significant reason for giving it further
attention is that almost all electrical power supplies involve sinusoidal
alternating current which is derived from sinusoidal alternating voltages,
although in later chapters we will see that it is also significant in many com-
munications systems.

Before we can set about analysing the performance of a.c. circuits and
networks, we need to be introduced to a number of terms which are used to
describe the effects of an alternating current. Therefore the remainder of this
chapter will be used to analyse alternating waveforms in preparation for a.c.
network analysis.

Figure 9.2 shows a loop AB carried by a spindle DD rotated at a constant
speed in an anticlockwise direction in a uniform magnetic field due to poles
NS. The ends of the loop are brought out to two slip-rings C, and C,,
attached to but insulated from DD. Bearing on these rings are carbon
brushes E, and E,, which are connected to an external resistor R.

When the plane of the loop is horizontal, as shown in Fig. 9.3(a), the two
sides A and B are moving parallel to the direction of the magnetic flux; it
follows that no flux is being cut and no e.m.f. is being generated in the loop.
Subsequent diagrams in Fig. 9.3 show the effects which occur as the coil is
rotated. In Fig. 9.3(b), the coil sides are cutting the flux and therefore an
e.m.f. is induced in the coil sides. Since the coil sides are moving in opposite
directions, the e.m.f.s act in opposite directions, as shown by the dot and
cross notation. However, they do act in the same direction around the coil so
that the e.m.f. which appears at the brushes is twice that which is induced in
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Fig. 9.2 Generation of an
alternating e.m.f.

Fig. 9.3 EMF in rotating coil
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a coil side. Once the coil reaches the position shown in Fig. 9.3(c), the rate
of cutting reaches a maximum. Thereafter the e.m.f. falls to zero by the time
the coil has rotated to the position shown in Fig. 9.3(d).

The induced e.m.f. in the position shown in Fig. 9.3(e) is of particular
interest. At first sight, it appears that the diagram is the same as that of
Fig. 9.3(b), but in fact it is side A which bears the cross while side B has the
dot. This means that the e.m.f. is of the same magnitude but of the opposite
polarity. This observation also applies to Fig. 9.3(f). It follows that the
variation of induced e.m.f. during the second half of the cycle of rotation is
the same in magnitude as during the first half but the polarity of the e.m.f.
has reversed.

We can now analyse the general case shown in Fig. 9.4(a) in which coil AB
is shown after it has rotated through an angle 6 from the horizontal position,
namely the position of zero e.m.f. Suppose the peripheral velocity of each
side of the loop to be u metres per second; then at the instant shown in
Fig. 9.4, this peripheral velocity can be represented by the length of a line
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Fig. 9.4 Instantaneous value of
generated e.m.f.

-~

(a) (®)

AL drawn at right angles to the plane of the loop. We can resolve AL into
two components, AM and AN, perpendicular and parallel respectively to the
direction of the magnetic flux, as shown in Fig. 9.4(b). Since

ZMLA =90° — ZMAL = /ZMAO =6
AM=ALsinO=usin 6

The e.m.f. generated in A is due entirely to the component of the velocity
perpendicular to the magnetic field. Hence, if B is the flux density in teslas
and if / is the length in metres of each of the parallel sides A and B of the
loop, it follows from expression [6.4] that e.m.f. generated in one side of
loop is

Blu sin 0 volts
and total e.m.f. generated in loop is

2Blu sin 6 volts
¢=2Blusin 6 [9.1]

i.e. the generated e.m.f. is proportional to sin 8. When 6 = 90°, the plane of
the loop is vertical and both sides of the loop are cutting the magnetic flux at
the maximum rate, so that the generated e.m.f. is then at its maximum value
E,.. From expression [9.1], it follows that when 8 =90°, E_ = 2Blu volts.

If b is the breadth of the loop in metres, and z the speed of rotation in
revolutions per second, then u is 7bn metres per second and

E_=2BI[ X mthn volts
= 2B An volts
where

A = Ib = area of loop in square metres
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Fig. 9.5 Sine wave of e.m.f.

Fig. 9.6 Ixtended sine wave
of e.m.f.

If the loop is replaced by a coil of N turns in series, each turn having an
area of A4 square metres, maximum value of e.m.f. generated in coil is

E, =2nBAnN  volts [9.2]

and instantaneous value of e.m.f. generated in coil is

e=FE, sin 0=21wBAnN sin 0 volts
e=2mwBAnNsin 0 [9.3]

Lower-case letters are used to represent instantaneous values and upper-
case letters represent definite values such as maximum, average or r.m.s.
values. In a.c. circuits, capital 7 and J" without any subscript represent r.m.s.
values — we will meet r.m.s. values in section 9.5.

This e.m.f. can be represented by a sine wave as in Fig. 9.5, where £
represents the maximum value of the e.m.f. and e is the value after the loop
has rotated through an angle 6 from the position of zero e.m.f. When the
loop has rotated through 180° or 7 radians, the e.m.f. is again zero. When 6
is varying between 180° and 360° (7 and 27 radians), side A of the loop is
moving towards the right in Fig. 9.4 and is therefore cutting the magnetic
flux in the opposite direction to that during the first half-revolution. Hence,
if we regard the e.m.f. as positive while 0 is varying between 0 and 180°, it
is negative while 0 is varying between 180° and 360° i.e. when 6 varies
between 180° and 270°, the value of the e.m.f. increases from zero to —F,,
and then decreases to zero as 6 varies between 270° and 360°. Subsequent
revolutions of the loop merely produce a repetition of the e.m.f. wave.

It is significant that we have concentrated on one cycle of events arising
from the single rotation of the coil AB shown in Fig. 9.2. However, alternat-
ing e.m.f.s and alternating voltages continue to repeat the cycle as suggested
in Fig. 9.6. Further, the effect at each of the situations shown in Fig. 9.3 recurs

+ E,
4
ol
| 90°  180° i 360° \
¢ . T : 27 radians
_ 2 !
I
I
I
1 cycle :
+ 2|3 23 2
4 4
o s rd
N N N !
- 5 5
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m Waveform terms

and definitions

Fig. 9.7 Cycles and periods

Fig. 9.8 Peak values

in each subsequent cycle. For instance, the e.m.f. which was induced in pos-
ition 2 can be seen to recur each time the e.m.f. waveform rises from zero.

Our consideration of alternating systems has already introduced a number of
terms and we will find the need of a few more. It will therefore be helpful to
consider the terms which we most commonly use:

Waveform. The variation of a quantity such as voltage or current shown on a
graph to a base of time or rotation is a waveform.

Cycle. Each repetition of a variable quantity, recurring at equal intervals, is
termed a cycle.

Period. The duration of one cycle is termed its period. (Cycles and periods
need not commence when a waveform is zero. Figure 9.7 illustrates a
variety of situations in which the cycle and period have identical values.)

Instantaneous value. The magnitude of a waveform at any instant in time
(or position of rotation). Instantaneous values are denoted by lower-case
symbols such as e, v and 1.

Peak value. The maximum instantaneous value measured from its zero value
is known as its peak value.

Peak-to-peak value. The maximum variation between the maximum positive
instantaneous value and the maximum negative instantaneous value is the
peak-to-peak value. For a sinusoidal waveform, this is twice the peak
value. The peak-to-peak value is £, or V, or I .

Peak amplitude. The maximum instantaneous value measured from the mean
value of a waveform is the peak amplitude. Later we will find how to
determine the mean value, but for most sinusoidal alternating voltages
and currents the mean value is zero. The peak amplitude is E,, or V or
I.. The peak amplitude is generally described as the maximum value,
hence the maximum voltage has the symbol V.

The relationships between peak value, peak-to-peak value and peak
amplitude (maximum value) are illustrated in Fig. 9.8.

1 Cycle 1 Cycle 1 Cycle

\_/

/ Peak-to-peak voltage

Peak voltage Peak-to-peak voltage

] _\/_ :

Peak voltage = maximum voltage
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Fig. 9.9 Effect on waveforms
by varying frequency

Example 9.1

7T=1ms 1 ms 1ms

7=0.5ms T=0.4ms
(b) ()

Frequency. The number of cycles that occur in 1 second is termed the fre-

quency of that quantity. Frequency is measured in hertz (Hz) in memory
of Heinrich Rudolf Hertz, who, in 1888, was the first to demonstrate
experimentally the existence and properties of electromagnetic radiation
predicted by Maxwell in 1865. It follows that frequency fis related to the
period 7 by the relation

1
7= T [9.4]

where f7is the frequency in hertz and 7 is the period in seconds. Assuming
each graph to be drawn to the same scale of time, the effect of increasing
the frequency is shown in Fig. 9.9. The diagrams assume frequencies of
1000 Hz (1 kHz), 2000 Hz (2 kHz) and 2500 Hz (2.5 kHz).

Frequency Symbol: Unit: hertz (Hz)

A coil of 100 turns is rotated at 1500 r/min in a magnetic field having
a uniform density of 0.05 T, the axis of rotation being at right angles
to the direction of the flux. The mean area per turn is 40 cm®. Calculate

(a) the frequency;

(b) the period;

(c¢) the maximum value of the generated e.m.f;

(d) the value of the generated e.m.f. when the coil has rotated
through 30° from the position of zero e.m.f.

(a) Since the e.m.f. generated in the coil undergoes one cycle of variation

when the coil rotates through one revolution,

Frequency = no. of cycles per second
= no. of revolutions per second
= 1500 =25Hz
60
(b) Period = time of 1 cycle
1
=—=0.04s
25
(c) From expression [9.2]

E,=27x0.05x%0.004 x 100 x 1500/60 = 3.14 V
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Relationship
between
frequency, speed
and number

of pole pairs

Average and
r.m.s. values of
an alternating
current

(d) For 6=30°, sin 30° = 0.5,
¢=3.14x05=157V

The waveform of the e.m.f. generated in an a.c. generator undergoes one
complete cycle of variation when the conductors move past a N and a S pole;
and the shape of the wave over the negative half is exactly the same as that
over the positive half.

The generator shown in Fig. 9.4 has two poles which can also be
described as having one pair of poles. Machines can have two or more pairs
of poles. For example, if there were N poles placed top and bottom and S
poles to either side then the machine would have two pairs of poles.

If an a.c. generator has p pairs of poles and if its speed is z revolutions per
second, then

Frequency = /= no. of cycles per second
= no. of cycles per revolution

X no. of revolutions per second
f=pn hertz [9.5]

Thus if a two-pole machine is to generate an e.m.f. having a frequency of
50 Hz, then from expression [9.5],

50=1xn
Speed = 50 revolutions per second = 50 X 60 = 3000 r/min

Since it is not possible to have fewer than two poles, the highest speed at
which a 50 Hz a.c. generator can be operated is 3000 r/min. Similarly a
60 Hz a.c. generator can only operate with a maximum speed of 3600 r/min. In
practice, these are the operating speeds of most generators in power stations
other than in hydroelectric generating plant in which lower speeds occur.

Most electrical energy is provided by rotating a.c. generators operating on
the principles already described in this chapter. The e.m.f.s and the resulting
voltages and currents are for the most part sinusoidal which is the waveform
on which we have concentrated. However, the use of electronic switching has
resulted in many circuits operating with waveforms which are anything but
sinusoidal; square waveforms are especially common in communication circuits.

Let us first consider the general case of a current the waveform of which
cannot be represented by a simple mathematical expression. For instance,
the wave shown in Fig. 9.10 is typical of the current taken by a transformer
on no load. If #n equidistant mid-ordinates, ;, i,, etc. are taken over either the
positive or the negative half-cycle, then average value of current over half a
cycle is

[= ittty 9.6]
n
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Fig. 9.10 Average and
r.m.s. values

Current

(a)

Heating effect

iBR | 3R | 3R

(b)

Or, alternatively, average value of current is

Area enclosed over half-cycle

[9.7]
Length of base over half-cycle

This method of expressing the average value is the more convenient when we
come to deal with sinusoidal waves.

In a.c. work, however, the average value is of comparatively little importance.
This is due to the fact that it is the power produced by the electric current that
usually matters. Thus, if the current represented in Fig. 9.10(a) is passed
through a resistor having resistance R ohms, the heating effect of 7, is /7R, that
of i, is 3R, etc. as shown in Fig. 9.10(b). The variation of the heating effect
during the second half-cycle is exactly the same as that during the first half-cycle.

AR+ #R+...+i’R

n

Average heating effect =

Suppose I to be the value of direct current through the same resistance R
to produce a heating effect equal to the average heating effect of the alter-
nating current, then

ifR+i3R+...+i’R

n

2 o2 )
[:\/[11+12+...+t,,] 9.8]
n

= square root of the mean of the squares of the current

I’'R=

= root-mean-square (or r.m.s.) value of the current



206

SECTION 1 ELECTRICAL PRINCIPLES

Fig. 9.11 An experiment to
demonstrate the r.m.s. value
of an alternating current

m Average and

r.m.s. values
of sinusoidal
currents and voltages

This quantity is also termed the effective value of the current. It will be seen

that the r.m.s. or effective value of an alternating current is measured in terms of

the direct current that produces the same heating effect in the same resistance.
Alternatively, the average heating effect can be expressed as follows:

Average heating effect over half-cycle

area enclosed by i’R curve over half-cycle
- [9.9]
length of base

This is a more convenient expression to use when deriving the r.m.s. value
of a sinusoidal current.

The following simple experiment can be found useful in illustrating the
significance of the r.m.s. value of an alternating current. A metal-filament
lamp L (Fig. 9.11) is connected to an a.c. supply by closing switch S on
contact a and the brightness of the filament is noted. Switch S is then moved
to position b and the slider on resistor R is adjusted to give the same
brightness. The reading on a moving-coil ammeter A then gives the value of
the direct current that produces the same heating effect as that produced by
the alternating current. If the reading on ammeter A is, say, 0.3 A when
equality of brightness has been attained, the r.m.s. value of the alternating
current is 0.3 A.

a b R
S
AC DC
supply L supply

cl L,

The r.m.s. value is always greater than the average except for a
rectangular wave, in which case the heating effect remains constant so that
the average and the r.m.s. values are the same.

Form factor of a wave is

RMS value

_— [9.10]
Average value

Peak or crest factor of a wave is
Peak or maximum value 9.11]

RMS value

If 7, is the maximum value of a current which varies sinusoidally as shown
in Fig. 9.12(a), the instantaneous value 7 is represented by

i=1,sin06

where 6 is the angle in radians from instant of zero current.
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Fig. 9.12 Average and r.m.s.
values of a sinusoidal current

(a)
r

I © + Current
le— ~.
/22/722;

]

\
IiR E

je—6—>| |« T 2n !
do

Heating effect

(b)

(0]

For a very small interval d@ radians, the area of the shaded strip is 7 - d@
ampere radians. The use of the unit ‘ampere radian’ avoids converting the
scale on the horizontal axis from radians to seconds, therefore, total area
enclosed by the current wave over half-cycle is

J i-dO = ImJ sin@ -df = —]m[cose];[

0 0
=—1I,[-1-1]= 21, ampere radians

From expression [9.7], average value of current over a half-cycle is

21, [ampere radians]

7 [radians]

ie. 1,,=0.6371, amperes [9.12]

If the current is passed through a resistor having resistance R ohms,
instantaneous heating effect = ;*R watts.

The variation of iR during a complete cycle is shown in Fig. 9.12(b).
During interval d radians, heat generated is i’R - 40 watt radians and is
represented by the area of the shaded strip. Hence heat generated during the
first half-cycle is area enclosed by the 7*R curve and is

J *R-d6 = IiRJ sin’6 - dO

0 0

2 T
= ]mRJ (1-cos20)-d6
2 )

= '2;R [0 — +sin26]

T .
= 2 I R watt radians
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From expression [9.9], average heating effect is

2 .
(7/2)I ; R [watt radians] — 112 R watts 9.13]

7 [radians]

This result can be observed from the equation sin’0=1 — 1 cos 26. In words,
this means that the square of a sine wave may be regarded as being made up
of two components: (a) a constant quantity equal to half the maximum value
of the sin?8 curve, and (b) a cosine curve having twice the frequency of the
sin O curve. From Fig. 9.12 it is seen that the curve of the heating effect
undergoes two cycles of change during one cycle of current. The average
value of component (b) over a complete cycle is zero; hence the average
heating effect is 175, R.

If 7 is the value of direct current through the same resistance to produce
the same heating effect

I’R=11R

I
I=""=0.7071 9.14
\2 " [9-14]

While 7 is Iy it is normal practice to omit the RMS subscript, as this is the
most common current.

Since the voltage across the resistor is directly proportional to the
current, it follows that the relationships derived for currents also apply
to voltages.

Hence, in general, average value of a sinusoidal current or voltage is

0.637 X maximum value

I, =0.637I, [9.15]

r.m.s. value of a sinusoidal current or voltage is

0.707 X maximum value

I=0.7071, [9.16]

From expressions [9.15] and [9.16], form factor of a sine wave is

0.707 X maximum value

0.637 X maximum value
k=111 [9.17]

and peak or crest factor of a sine wave is

maximum value

0.707 X maximum value

k,=1414 [9.18]
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Example 9.2

Example 9.3

Example 9.4

An alternating current of sinusoidal waveform has an r.m.s. value of
10.0 A. What are the peak values of this current over one cycle?

=2 -1 4144
0707 ~ 0707

The peak values therefore are 14.14 A and —14.14 A.

An alternating voltage has the equation v = 141.4 sin 377¢; what are
the values of:

(a) r.m.s. voltage;
(b) frequency;
(c) the instantaneous voltage when 7 =3 ms?

The relation is of the form v = J/, sin @¢ and, by comparison,
(@) V,=1414V=\2V

hence V= w =100V
\2

(b) Also by comparison
w=377rad/s =2xf
hence [f= 377 =60 Hz
2
(c¢) Finally
v =141.4 sin 377¢
When =3x107s
v=141.45in(377 x 3 x 107) = 141.4 sin 1.131
=141.4x0.904 =127.8 V
Note that, in this example, it was necessary to determine the sine of

1.131 rad, which could be obtained either from suitable tables, or from a calcula-
tor. Alternatively, 1.131 rad may be converted into degree measurement, i.e.

1.131 rad =1.131 x 180 =64.8°
T

A moving-coil ammeter, a thermal®* ammeter and a rectifier are
connected in series with a resistor across a 110 V sinusoidal a.c.
supply. The circuit has a resistance of 50 Q to current in one direc-
tion and, due to the rectifier, an infinite resistance to current in the
reverse direction. Calculate:

(a) the readings on the ammeters;
(b) the form and peak factors of the current wave.

* A thermal ammeter is an instrument the operation of which depends upon the
heating effect of a current.
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Fig. 9.13 Waveforms of
voltage, current and power for
Example 9.4

PAaEEN
e s~ Voltage
4

<
J/ N Current
’ : . (a)
’ Iy S 2
’, \y /
o 2

Heating effect in
thermal ammeter

o

(a) Maximum value of the voltage

po= V10 sssy
0.707  0.707

therefore maximum value of the current

ATy L ST
R 50

During the positive half-cycle the current is proportional to the voltage
and is therefore sinusoidal, as shown in Fig. 9.13(a); therefore average value
of current over the positive half-cycle

1,=0.6371,=0.637 x3.11=1.98 A

During the negative half-cycle, the current is zero. Owing, however, to
the inertia of the moving system, the moving-coil ammeter reads the average
value of the current over the whole cycle, therefore reading on moving-coil
ammeter is

198 =0.99A
2

The variation of the heating effect in the thermal ammeter is shown in
Fig. 9.13(b), the maximum power being /2 R, where R is the resistance of the
instrument.

From expression [9.13] it is seen that the average heating effect over
the positive half-cycle is 1/, R; and since no heat is generated during the
second half-cycle, it follows that the average heating effect over a complete
cycleis +71,R.

If 7 is the direct current which would produce the same heating effect

PR=1IR

11
1=§1m=37= 1.555A

i.e. reading on thermal ammeter = 1.56 A.
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Average and

r.m.s. values of
non-sinusoidal
currents and voltages

Example 9.5

Fig. 9.14 Part of Example 9.5

A mistake that can very easily be made is to calculate the r.m.s. value
of the current over the positive half-cycle as (0.707 X 3.11, namely 2.2 A,
and then say that the reading on the thermal ammeter is half this value,
namely 1.1 A. The importance of working out such a problem from first
principles should now be evident.

(b) From equation [9.17], form factor is

k= El 1553 =1.57
1 0.99

av

and from equation [9.18], peak factor is

P71 T 1555

Having demonstrated the determination of average and r.m.s. values for
sinusoidal currents and voltages, it is a relatively short step to consider
non-sinusoidal quantities. This can easily be done by considering further
examples.

A current has the following steady values in amperes for equal
intervals of time changing instantaneously from one value to the
next (Fig. 9.14):

0, 10, 20, 30, 20, 10, 0, —10, —20, —30, —20, —10, 0, etc.
Calculate the r.m.s. value of the current and its form factor.

Because of the symmetry of the waveform, it is only necessary to calculate
the values over the first half-cycle.

-10A |-

-20A |

-30A
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area under curve

length of base

0| Zo—o|+10[ 2 = T | 4| 3T 27 5o AT 3T | ST _ AT | O _ 5T
a 6w 6w 6w 6w 6w 6w 6w 6w 6w 6w 6w

=15.0A

02 T 0|+ 102 2 T g BT 2T e ST g ST AT e[ 67 ST
o 6w 6w 6w 6w 6w 6w 6w 6w 6w 6w 6w

=316

I1=1316=178A

=L 2178 119
I. 150

Example 9.6

1A

(a)

10A —‘
(0]

1 10 3

(b)
Fig. 9.15 Part of Example 9.6

Representation
of an alternating
quantity by a
phasor

Calculate the form factor for each of the waveforms in Fig. 9.15.

For Fig. 9.15(a): For Fig. 9.15(b):

100 o , _100-0 000D
10— 0 10— 0
1 1
2 _ 2 2 _ 2 _ 2
7= | BA0=00F 404 (= [ 0A=0+0A0 =D 1500
10-0 10-0
f= L 10 p= L 316
10 10
=10 =316

It will be noted that the first waveform is that of direct current in which
the r.m.s. current and the mean current have the same value. It is for this
reason that the r.m.s. value of an alternating current may be equated to the
mean value of a direct current.

Suppose OA in Fig. 9.16(a) to represent to scale the maximum value of an
alternating quantity, say, current, i.e. OA = /... Also, suppose OA to rotate
anticlockwise about O at a uniform angular velocity. This is purely a con-
ventional direction which has been universally adopted. An arrowhead is
drawn at the outer end of the phasor, partly to indicate which end is assumed
to move and partly to indicate the precise length of the phasor when two or
more phasors happen to coincide.

Figure 9.16(a) shows OA when it has rotated through an angle 6 from the
position occupied when the current was passing through its zero value. If
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Fig. 9.16 Phasor representation
of an alternating quantity

210° 270° 360°

AB and AC are drawn perpendicular to the horizontal and vertical axes
respectively:

OC=AB=0Asin6
=1,sin6
= 7, namely the value of the current at that instant

Hence the projection of OA on the vertical axis represents to scale the
instantaneous value of the current. Thus when 6= 90°, the projection is OA
itself; when 6 = 180°, the projection is zero and corresponds to the current
passing through zero from a positive to a negative value; when 6 = 210°,
the phasor is in position OA,, and the projection = OD = 10A, = 11 ;
and when 6 = 360°, the projection is again zero and corresponds to the
current passing through zero from a negative to a positive value. It follows
that OA rotates through one revolution or 27 radians in one cycle of the
current wave.

If f'is the frequency in hertz, then OA rotates through frevolutions of 27f
radians in 1s. Hence the angular velocity of OA is 27/ radians per second
and is denoted by the symbol ® (omega), i.e.

w=2xf radians per second [9.19]
If the time taken by OA in Fig. 9.16 to rotate through an angle 6 radians is ¢
seconds, then
0 = angular velocity X time
= @r = 2xft radians
We can therefore express the instantaneous value of the current thus:

i=1_sin0=1_sin wt
1=1,sin2xft [9.20]

Let us next consider how two quantities such as voltage and current can
be represented by a phasor diagram. Figure 9.17(b) shows the voltage leading
the current by an angle ¢. In Fig. 9.17(a), OA represents the maximum value
of the current and OB that of the voltage. The angle between OA and OB
must be the same angle ¢ as in Fig. 9.17(b). Consequently when OA is along
the horizontal axis, the current at that instant is zero and the value of the
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Fig. 9.17 Phasor representation
of quantitites differing in phase

m Addition and

subtraction
of sinusoidal
alternating quantities

Fig. 9.18 Addition of phasors

Current

Voltage
0 360°

(a) (b)

voltage is represented by the projection of OB on the vertical axis. These
values correspond to instant O in Fig. 9.17(b).

After the phasors have rotated through an angle 6, they occupy positions
OA, and OB, respectively, with OB; still leading OA, by the same angle ¢;
and the instantaneous values of the current and voltage are again given by the
projections of OA; and OB, on the vertical axis, as shown by the horizontal
dotted lines.

If the instantaneous value of the current is represented by

i=1,sin6

then the instantaneous value of the voltage is represented by
v=V,sin(60+ ¢)

where [,=0A and 7V, =0BinFig. 9.17(a).

The current in Fig. 9.17 is said to /ag the voltage by an angle ¢ which is the
phase difference between the two phasors. The phase difference remains
constant irrespective of the phasor positions. When one sine wave passes
through the zero following another, it is said to lag. Thus in Fig. 9.17, the
current lags the voltage.

Suppose OA and OB in Fig. 9.18 to be phasors representing to scale the
maximum values of, say, two alternating voltages having the same frequency
but differing in phase by an angle ¢. Complete the parallelogram OACB and
draw the diagonal OC. Project OA, OB and OC on to the vertical axis. Then
for the positions shown in Fig. 9.18:

Instantaneous value of OA = OD
Instantaneous value of OB = OE

and Instantaneous value of OC = OF

Since AC is parallel and equal to OB, DF = OFE,
OF =0D + DF =0D + OE

1.e. the instantaneous value of OC equals the sum of the instantaneous values of
OA and OB. Hence OC represents the maximum value of the resultant voltage
to the scale that OA and OB represent the maximum values of the separate
voltages. Therefore OC is termed the phasor sum of OA and OB; and it is
evident that OC is less than the arithmetic sum of OA and OB except when
the latter are in phase with each other. This is the reason why it is seldom
correct in a.c. work to add voltages or currents together arithmetically.
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Fig. 9.19 Subtraction of phasors

/
----/-{o

=

t

o]
@]

Fig. 9.20 Addition of phasors
for Example 9.7

o

If voltage OB is to be subtracted from OA, then OB is produced back-
wards so that OB; is equal and opposite to OB (Fig. 9.19). The diagonal OD
of the parallelogram drawn on OA and OB, represents the phasor differences
of OA and OB.

For simplicity, OA can be represented by A and OB as B, bold letters
being used to indicate the appropriate phasors. It follows that

C=A+B and D=A-B

The instantaneous values of two alternating voltages are represented
respectively by v, = 60 sin 6 volts and v, =40 sin(6 — 7/3) volts. Derive
an expression for the instantaneous value of:

(a) the sum;

(b) the difference of these voltages.

(a) Itis usual to draw the phasors in the position corresponding to 0= 0,*
1.e. OA in Fig. 9.20 is drawn to scale along the x-axis to represent 60 V, and
OB is drawn 7/3 radians or 60° behind OA to represent 40 V. The diagonal
OC of the parallelogram drawn on OA and OB represents the phasor sum of
OA and OB. By measurement, OC = 87 V and angle ¢ between OC and the
x-axis is 23.5°, namely 0.41 rad; hence:

Instantaneous sum of the two voltages = 87 sin(6 — 23.5°) V
Alternatively, this expression can be found thus:

Horizontal component of OA =60 V

Horizontal component of OB = OD =40 cos 60° =20 V

Resultant horizontal component = OA + OD = 60 + 20
=80V =OE in Fig. 9.20

Vertical component of OA =0

Vertical component of OB = BD = —40 sin 60°

=-34.64V
Resultant vertical component = -34.64 V= CE

The minus sign merely indicates that the resultant vertical component is
below the horizontal axis and that the resultant voltage must therefore lag
relative to the reference phasor OA. Hence maximum value of resultant
voltage is

OC = V{(80)? + (—34.64)*}
=872V

* The idea of a phasor rotating continuously serves to establish its physical
significance, but its application in circuit analysis is simplified by fixing the phasor in
position corresponding to ¢ = 0, as in Fig. 9.20, thereby eliminating the time function.
Such a phasor represents the magnitude of the sinusoidal quantity and its phase
relative to a reference quantity, e.g. in Fig. 9.20 phasor OB lags the reference phasor
OA by 60°.



216

SECTION 1 ELECTRICAL PRINCIPLES

B, C
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Fig. 9.21 Subtraction of
phasors for Example 9.7

Phasor

diagrams drawn
with r.m.s. values
instead of
maximum values

If ¢ is the phase difference between OC and OA

tan ¢ = EC/OE = —% =-0.433

¢=-23.4°=-0.41rad
and instantaneous value of resultant voltage is
87.2sin(6—-23.5°) V

(b) The construction for subtracting OB from OA is shown in Fig. 9.21.
By measurement, OC = 53 V and ¢ = 41° = 0.715 rad. Therefore instanta-
neous difference of the two voltages is

53 sin(0+40.9°) V
Alternatively, resultant horizontal component is

OA - OE =60-20=40V =0D in Fig. 9.21
and Resultant vertical component = BE = 34.64 V

=DCin Fig. 9.21
therefore maximum value of resultant voltage is
OC = V{(40)? + (34.64)%}
=529V

and tan 9= DC/0OD = %

=0.866
¢=40.9°=0.714 rad
and instantaneous value of resultant voltage is

52.9 sin(6+ 40.9°) V

It is important to note that when alternating voltages and currents are
represented by phasors it is assumed that their waveforms are sinusoidal.
It has already been shown that for sine waves the r.m.s. or effective value is
0.707 times the maximum value. Furthermore, ammeters and voltmeters
are almost invariably calibrated to read the r.m.s. values. Consequently it
is much more convenient to make the length of the phasors represent
r.m.s. rather than maximum values. If the phasors of Fig. 9.21, for instance,
were drawn to represent to scale the r.m.s. instead of the maximum values
of the voltages, the shape of the diagram would remain unaltered and
the phase relationships between the various quantities would remain
unaffected. Hence in all phasor diagrams from now onwards, the lengths of
the phasors will, for convenience, represent the r.m.s. values. This is the
usual practice.
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m Alternating

system
frequencies
in practice

We have discussed alternating voltages, currents and frequencies at some
length. Before progressing to the analysis of a.c. circuits, it would be
appropriate to consider what values we are likely to meet in practice.

Most electrical supplies operate at 50 or 60 Hz, with domestic supplies at
110 V up to 230 V. However, the power is distributed at higher voltages
such as 11 000 V and transmitted at such voltages as 275 kV. Currents can
be anything up to a few thousand amperes.

The sounds we hear depend on frequency. We can produce sound by
using electrical signals between 15 Hz and 20 kHz, although not many of us
can hear the upper limit. As the frequencies increase, we find signals which
can be used to transmit radio, television and other communications informa-
tion. In particular most of us are familiar with identifying radio stations by
a frequency between 88 and 108 MHz. Frequencies above and below this
range are used for television signals.

Frequencies above 300 MHz are known as microwave frequencies.
This range can rise up to 300 GHz, thus we can experience remarkably high
values of frequency in practice. However, in most systems at high frequen-
cies the voltages and currents are normally very small, e.g. millivolts and
microamperes.

The ranges of frequency are indicated in Fig. 9.22.

Radio frequencies (spectrum)

3 kHz-300 GHz

[«—— Microwave ——>|

Microwave
oven EHF
SHI 30-300 GHz
UHF (extremely high frequency)

3-30 GHz (super high frequency)
300 MHz—-3 GHz (ultrahigh frequency)

VHF

HE 30-300 MHz (very high frequency)

MF

3-30 MHz (high frequency)

LF

300 kHz—3 MHz (medium frequency)

VLF

! 30-300 kHz (low frequency)

Audio frequencies

3-30 kHz (very low frequency)

16-80 Hz

15 Hz-20 kHz

Power frequencies

1Hz 10Hz 100Hz 1kHz

Fig. 9.22 Frequency ranges

10kHz 100kHz 1MHz 10MHz 100MHz 1GHz 10GHz 100 GHz 1000 GHz f(log scale)
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Summary of important
formulae

Terms and concepts

Instantaneous value of e.m.f. generated in a coil rotating in a uniform

magnetic field is
e=FE,sin0

= 2nBANnm sin 0 volts

JS=np
For n equidistant mid-ordinates over half a cycle
AP iy AF oaadE
Average value = -—2—""—"
n

and r.m.s. or effective value is

i+l
n

For sinusoidal waves

Average value = (0.637 X maximum value

1,,=0.6371,
RMS or effective value is 0.707 X maximum value
1=0.7071,
1
=—1
V2"
r.m.s. value

Form factor =
average value

ky=1.11 for a sine wave

peak or maximum value

Peak or crest factor =
r.m.s. value

k, = 1.414 for a sine wave

[9.3]
[9.4]

[9.5]

[9.6]

[9.8]

[9.12]

[9.14]

[9.10]

[9.11]

An alternating system is one in which the voltages and currents vary in
a repetitive manner. A cycle of variation is the sequence of change

before repetition commences.

The most basic form of alternating system is based on a sinusoidal

variation.

A sinusoidal e.m.f. can be generated by rotating a rectangular coil in a
uniform magnetic field although in practical terms this would be a

most inefficient method.

The time taken to complete a cycle is the period.
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Terms and concepts
continued

Exercises 9

1. A coil is wound with 300 turns on a square former

The frequency is the number of cycles completed in a second.

The average value of an alternating waveform has to be taken over
half a cycle. The application of the average value is somewhat
limited.

The root-mean-square value (r.m.s.) of an alternating waveform can be
taken over half a cycle or over a full cycle. It is the one most generally
used in electrical alternating systems.

A phasor is a line drawn to represent a sinusoidal alternating quantity. It
is drawn to scale and its angle relative to the horizontal represents its
phase shift in time.

Phasors can be added and subtracted so long as they represent like
quantities.

Phasor diagrams can be used to represent r.m.s. quantities in which
case they are frozen in time.

In practice electrical frequencies can vary from about 15 Hz to 300 GHz
depending on the application.

Phase angle,

having sides 50 mm in length. Calculate the maximum
value of the e.m.f. generated in the coil when it
is rotated at 2000 r/min in a uniform magnetic
field of density 0.8 T. What is the frequency of this
e.m.f.?

. Explain what is meant by the terms mwaveform,
frequency and average value.

A square coil of side 10 cm, having 100 turns, is
rotated at 1200 r/min about an axis through the centre
and parallel with two sides in a uniform magnetic
field of density 0.4 T. Calculate: (a) the frequency;
(b) the root-mean-square value of the induced e.m.f;
(c) the instantaneous value of the induced e.m.f. when
the coil is at a position 40° after passing its maximum
induced voltage.

. A rectangular coil, measuring 30 cm by 20 cm and
having 40 turns, is rotated about an axis coinciding
with one of its longer sides at a speed of 1500 r/min
in a uniform magnetic field of flux density 0.075 T.
Find, from first principles, an expression for the
instantaneous e.m.f. induced in the coil, if the flux is at
right angles to the axis of rotation. Evaluate this e.m.f.
at an instant (0.002 s after the plane of the coil has been
perpendicular to the field.

. The following ordinates were taken during a half-
cycle of a symmetrical alternating-current wave, the
current varying in a linear manner between successive
points:

in degrees 0 15 30 45 60 75 90
Current, in

amperes 0 36 84 14.0 194 225 25.0
Phase angle,

in degrees 105 120 135 150 165 180
Current, in

amperes 252 23.0 156 94 42 0

Determine: (a) the mean value; (b) the r.m.s. value;
(¢) the form factor.

. Explain the significance of the root-mean-square value

of an alternating current or voltage waveform. Define
the form factor of such a waveform.

Calculate from first principles the r.m.s. value
and form factor of an alternating voltage having the
following values over half a cycle, both half-cycles
being symmetrical about the zero axis:

Time (ms) 0 1 2 3 4
Voltage (V) 0 100 100 100 0

These voltage values are joined by straight lines,

. A triangular voltage wave has the following values over

one half-cycle, both half-cycles being symmetrical
about the zero axis:

Time (ms)
0 10 20 30 40 50 60 70 80 90 100
Voltage (V)
0 2 4 6 8 10 8 6 4 2 0
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Exercises 9 continued

10.

11.

12,

Plot a half-cycle of the waveform and hence deter-
mine: (a) the average value; (b) the r.m.s. value; (c) the
form factor.

Describe, and explain the action of, an ammeter
suitable for measuring the r.m.s. value of a current.

An alternating current has a periodic time 27.
The current for a time one-third of 7 is 50 A; for a
time one-sixth of 7, it is 20 A; and zero for a time
equal to one-half of 7. Calculate the r.m.s. and average
values of this current.

A triangular voltage wave has a periodic time of % s.
For the first 15 s of each cycle it increases uniformly
at the rate of 1000 V/s, while for the last g s it falls
away uniformly to zero. Find, graphically or other-
wise: (a) its average value; (b) its r.m.s. value; (c) its
form factor.

Define the root-mean-square value of an alternating
current. Explain why this value is more generally
employed in a.c. measurements than either the average
or the peak value. Under what circumstances would it
be necessary to know (a) the average and (b) the peak
value of an alternating current or voltage?

Calculate the ratio of the peak values of two
alternating currents which have the same r.m.s.
values, when the waveform of one is sinusoidal and
that of the other triangular. What effect would lack of
symmetry of the triangular wave about its peak value
have upon this ratio?

A voltage, 100 sin 3147 volts, is maintained across a
circuit consisting of a half-wave rectifier in series with
a 50 Q resistor. The resistance of the rectifier may be
assumed to be negligible in the forward direction and
infinity in the reverse direction. Calculate the average
and the r.m.s. values of the current.

State what is meant by the root-mean-square value of
an alternating current and explain why the r.m.s. value
is usually more important than either the maximum or
the mean value of the current.

A moving-coil ammeter and a moving-iron

ammeter are connected in series with a rectifier across
a 110 V (r.m.s.) a.c. supply. The total resistance of
the circuit in the conducting direction is 60 € and that
in the reverse direction may be taken as infinity.
Assuming the waveform of the supply voltage to be
sinusoidal, calculate from first principles the reading
on each ammeter.
If the waveform of a voltage has a form factor of
1.15 and a peak factor of 1.5, and if the peak value is
4.5 kV, calculate the average and the r.m.s. values of
the voltage.

13.

14.

15.

16.

17.

18.

An alternating current was measured by a d.c.
milliammeter in conjunction with a full-wave recti-
fier. The reading on the milliammeter was 7.0 mA.
Assuming the waveform of the alternating current to
be sinusoidal, calculate: (a) the r.m.s. value; and (b) the
maximum value of the alternating current.

An alternating current, when passed through a resistor
immersed in water for 5 min, just raised the temper-
ature of the water to boiling point. When a direct
current of 4 A was passed through the same resistor
under identical conditions, it took 8 min to boil the
water. Find the r.m.s. value of the alternating current.
Neglect factors other than heat given to the water.
If a rectifier type of ammeter connected in series with
the resistor read 5.2 A when the alternating current
was flowing, find the form factor of the alternating
current.

Explain what is meant by the r.m.s. value of an
alternating current.

In a certain circuit supplied from 50 Hz mains, the
potential difference has a maximum value of 500 V
and the current has a maximum value of 10 A. At the
instant ¢+ = 0, the instantaneous values of the p.d.
and the current are 400 V and 4 A respectively, both
increasing positively. Assuming sinusoidal variation,
state trigonometrical expressions for the instantaneous
values of the p.d. and the current at time 7. Calculate
the instantaneous values at the instant 7 = (0.015 s and
find the angle of phase difference between the p.d. and
the current. Sketch the phasor diagram.

Explain with the aid of a sketch how the r.m.s. value of
an alternating current is obtained.

An alternating current : is represented by i =
10 sin 942 amperes. Determine: (a) the frequency;
(b) the period; (c) the time taken from 7 = 0 for the
current to reach a value of 6 A for a first and second
time; (d) the energy dissipated when the current flows
through a 20 Q resistor for 30 min.

(a) Explain the term r.m.s. value as applied to an
alternating current.

(b) An alternating current flowing through a circuit
has a maximum value of 70 A, and lags the applied
voltage by 60°. The maximum value of the voltage is
100 V, and both current and voltage waveforms are
sinusoidal. Plot the current and voltage waveforms in
their correct relationship for the positive half of the
voltage. What is the value of the current when the
voltage is at a positive peak?

Two sinusoidal e.m.f.s of peak values 50 V and 20 V
respectively but differing in phase by 30° are induced
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Exercises 9 continued

19.

20.

21.

22,

in the same circuit. Draw the phasor diagram and find
the peak and r.m.s. values of the resultant e.m.f.
Two impedances are connected in parallel to the
supply, the first takes a current of 40 A at a lagging
phase angle of 30°, and the second a current of 30 A at
a leading phase angle of 45°. Draw a phasor diagram to
scale to represent the supply voltage and these currents.
From this diagram, by construction, determine the
total current taken from the supply and its phase angle.
Two circuits connected in parallel take alternating
currents which can be expressed trigonometrically
as 7, = 13 sin 314 amperes and 7, = 12 sin(3141 + 7/4)
amperes. Sketch the waveforms of these currents to
illustrate maximum values and phase relationships.
By means of a phasor diagram drawn to scale,
determine the resultant of these currents, and express
it in trigonometric form. Give also the r.m.s. value and
the frequency of the resultant current.
The voltage drops across two components, when
connected in series across an a.c. supply, are: v, =
180 sin 314¢ volts and v, = 120 sin(3147 + ©/3) volts
respectively. Determine with the aid of a phasor
diagram: (a) the voltage of the supply in trigonometric
form; (b) the r.m.s. voltage of the supply; (c) the
frequency of the supply.
Three e.m.f.s, e, = 50 sinws, ¢ = 80 sin(wr — 7/6)
and ec = 60 cos@! volts, are induced in three coils
connected in series so as to give the phasor sum of
the three e.m.f.s. Calculate the maximum value of

23.

24,

25.

the resultant e.m.f. and its phase relative to e.m.f. ¢,.
Check the results by means of a phasor diagram drawn
to scale. If the connections to coil B were reversed,
what would be the maximum value of the resultant
e.m.f. and its phase relative to ¢,?
Find graphically or otherwise the resultant of the fol-
lowing four voltages:
e; =25 sinwt,
e, = 30 sin(wr + 7/ 6);
e; =30 cos wt;
e, =20 sin(wr — m/4).
Express the answer in a similar form.
Four em.fis, ¢; = 100 sin @¢, ¢, = 80 sin(wr — 7/6),
e; =120 sin(@t + n/4) and e, = 100 sin(w? — 27/ 3), are
induced in four coils connected in series so that the
sum of the four e.m.f.s is obtained. Find graphically
or by calculation the resultant e.m.f. and its phase
difference with (a) ¢, and (b) ¢,.

If the connections to the coil in which the e.m.f. e,
is induced are reversed, find the new resultant e.m.f.
The currents in three circuits connected in parallel to
a voltage source are: (a) 4 A in phase with the applied
voltage; (b) 6 A lagging the applied voltage by 30°;
(c) 2 A leading the applied voltage by 45°. Represent
these currents to scale on a phasor diagram, showing
their correct relative phase displacement with each
other. Determine, graphically or otherwise, the total
current taken from the source, and its phase angle with
respect to the supply voltage.



Chapter ten

When you have studied this chapter, you should

have an understanding of the effects of applying
an alternating voltage across each of a resistor,
an inductor and a capacitor

be familiar with the reactance of an inductor
and of a capacitor

be capable of analysing a.c. circuits containing
resistance or inductive reactance or capacitive
reactance

recognize the effect resistance, inductance or
capacitance has on the phase difference
between the applied voltage and the current
have an understanding of impedance in a series
a.c. circuit

be capable of analysing circuits containing any
form of series impedance
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Now that we are familiar with alternating currents and voltages, we can apply them in

turn to each of the three basic components of a circuit, i.e. to a resistor, to an inductor and

to a capacitor. We shall find that each responds in a completely different manner with the

result that the current and voltage do not rise and fall at the same time unless the circuit

only contains resistance. For inductors and capacitors, the relationship between voltage

and current is termed the reactance and we find that in practice most circuits contain both

resistance and reactance. We shall therefore look at circuits in which both resistance and

reactance appear in series.
The observations that we make in this chapter form the basis of the manner in which

we talk about a.c. systems. For this reason, its effects range far beyond the mere analysis of

series a.C. CIrCuits.
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m Basic a.c.

circuits

m Alternating

current in a
resistive circuit

@ | ||

Fig. 10.1 Circuit with
resistance only

Fig. 10.2 Voltage and current
waveforms for a resistive circuit

In Chapter 9, we were introduced to a variety of waveforms which apply to
alternating currents and voltages. In order to make our approach as simple as
possible, we will limit the content of this chapter to circuits which contain a
single generator producing a pure sinusoidal voltage. As previously noted,
this is a reasonably good approximation to the electricity supply we meet at
home. Such circuits are termed single-phase circuits.

Consider a circuit having a resistance R ohms connected across the terminals
of an a.c. generator G, as in Fig. 10.1, and suppose the alternating voltage to
be represented by the sine wave of Fig. 10.2. If the value of the voltage at any
instant B is v volts, the value of the current at that instant is given by

.0
1 = — amperes
R

When the voltage is zero, the current is also zero; and since the current is
proportional to the voltage, the waveform of the current is exactly the same
as that of the voltage. Also the two quantities are in phase with each other;
that is, they pass through their zero values at the same instant and attain their
maximum values in a given direction at the same instant. Hence the current
wave is as shown in colour in Fig. 10.2.

If V, and I, are the maximum values of the voltage and current respect-
ively, it follows that

[ =-= [10.1]

But the r.m.s. value of a sine wave is 0.707 times the maximum value, so that
RMS value of voltage = V'=0.707V,
and RMS value of current = 7 =0.7071,,

Substituting for 7, and V, in equation [10.1] we have

A
0.707  0.707R
14
I=— 10.2
= [10.2]
- : Vi Voltage
+ | I Current
|} 5 : 1,
Ml
B t
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v
—_—

i

Fig. 10.3 Phasor diagram for a
resistive circuit

Alternating
current in an
inductive circuit

A.C.

source

Fig. 10.4 Circuit with
inductance only

Hence Ohm’s law can be applied without any modification to an a.c. circuit
possessing resistance only.
If the instantaneous value of the applied voltage is represented by

v=V_sin ot

then instantaneous value of current in a resistive circuit is

[10.3]

A
i = ——sin Ot
R

The phasors representing the voltage and current in a resistive circuit are
shown in Fig. 10.3. The two phasors are actually coincident, but are drawn
slightly apart so that the identity of each may be clearly recognized. As
mentioned on p. 215, it is usual to draw the phasors in the position
corresponding to @¢ = 0. Hence the phasors representing the voltage and
current of expression [10.3] are drawn along the x-axis.

Finally let us briefly return to Fig. 10.1. The symbol used to represent the
source generator was circular. Such a symbol indicates that the generator
was a rotating machine but this only arises in power situations. In electronics
situations, the a.c. source is static and therefore it is better to use the general
symbol shown in Fig. 10.4, i.e. a square, which represents any form of
source. The sinusoid indicates that it is an a.c. source and the 1 is optional.
Normally it would be included in power situations and left out in electronics
and communications applications.

Let us consider the effect of a sinusoidal current flowing through a coil
having an inductance of L henrys and a negligible resistance, as in Fig. 10.4.
For instance, let us consider what is happening during the first quarter-cycle
of Fig. 10.5. This quarter-cycle has been divided into three equal intervals,
OA, AC and CF seconds. During interval OA, the current increases from
zero to AB; hence the average rate of change of current is AB/OA amperes
per second, and is represented by ordinate JK drawn midway between O and
A. From expression [8.2], the e.m.f., in volts, induced in a coil is

L X rate of change of current in amperes per second

consequently, the average value of the induced e.m.f. during interval OA
is L X AB/OA, namely L X JK volts, and is represented by ordinate JQ in
Fig. 10.5.

Similarly, during interval AC, the current increases from AB to CE, so
that the average rate of change of current is DE/AC amperes per second,
which is represented by ordinate LM in Fig. 10.5; and the corresponding
induced e.m.f. is L X LM volts and is represented by LLR. During the third
interval CF, the average rate of change of current is GH/CF, namely NP
amperes per second; and the corresponding induced e.m.f. is L X NP volts
and is represented by NS. At instant F, the current has ceased growing but
has not yet begun to decrease; consequently the rate of change of current is
then zero. The induced e.m.f. will therefore have decreased from a max-
imum at O to zero at F. Curves can now be drawn through the derived points,
as shown in Fig. 10.5.
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Fig. 10.5 Waveforms of
current, rate of change of current
and induced e.m.f.

Fig. 10.6 Voltage and current
waveforms for a purely inductive
circuit

Current

oE-------T
(o]

Induced c.lm.f.

Rate of change of current

During the second quarter-cycle, the current decreases, so that the rate
of change of current is negative and the induced e.m.f. becomes positive,
tending to prevent the current decreasing. Since the sine wave of current is
symmetrical about ordinate FH, the curves representing the rate of change
of current and the e.m.f. induced in the coil will be symmetrical with those
derived for the first quarter-cycle. Since the rate of change of current at any
instant is proportional to the slope of the current wave at that instant, it is
evident that the value of the induced e.m.f. increases from zero at F to a
maximum at T and then decreases to zero at U in Fig. 10.5.

By using shorter intervals, for example by taking ordinates at intervals
of 10° and noting the corresponding values of the ordinates with the aid
of a calculator with trigonometric functions, it is possible to derive fairly
accurately the shapes of the curves representing the rate of change of current
and the induced e.m.f.

From Fig. 10.5 it will be seen that the induced e.m.f. attains its maximum
positive value a quarter of a cycle before the current has done the same thing
— in fact, it goes through all its variations a quarter of a cycle before the
current has gone through similar variations. Hence the induced e.m.f. is said
to lead the current by a quarter of a cycle or the current is said to lag the
induced e.m.f. by a quarter of a cycle.

Since the resistance of the coil is assumed negligible, we can regard the
whole of the applied voltage as being the induced e.m.f. Hence the curve of
applied voltage in Fig. 10.6 can be drawn the same as that of the induced
e.m.f.; and since the latter is sinusoidal, the wave of applied voltage must also
be a sine curve.

From Fig. 10.6 it is seen that the applied voltage attains its maximum
positive value a quarter of a cycle earlier than the current; in other words,

v,e,0
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m Current and

voltage in an
inductive circuit

Fig. 10.7 Voltage and current
waveforms for a purely inductive
circuit

the voltage applied to a purely inductive circuit leads the current by a
quarter of a cycle or 90°, or the current lags the applied voltage by a quarter
of a cycle or 90°.

The student might quite reasonably ask: If the applied voltage is neutral-
ized by the induced e.m.f., how can there be any current? The answer is that
if there were no current there would be no flux, and therefore no induced
e.m.f. The current has to vary at such a rate that the e.m.f. induced by the
corresponding variation of flux is equal and opposite to the applied voltage.
Actually there is a slight difference between the applied voltage and the
induced e.m.f., this difference being the voltage required to send the current
through the low resistance of the coil.

Suppose the instantaneous value of the current through a coil having induct-
ance L henrys and negligible resistance to be represented by

1=1,sin @t = I, sin 27ft [10.4]

where ¢ is the time, in seconds, after the current has passed through zero
from negative to positive values, as shown in Fig. 10.7.

Suppose the current to increase by dz amperes in dz seconds, then instan-
taneous value of induced e.m.f. is

e=1.
dr
d .
= LI, —(sin 27f1)
ds
=2nfLI, cos 2rft
. T
e=2nfLI, sm[Zﬂ'ft + EJ [10.5]

Since frepresents the number of cycles per second, the duration of 1 cycle
= 1/fseconds. Consequently when

=0, cos2nfr=1
and Induced e.m.f. =2xfL1,
When t=1/(2f), cos2rft=cos t=-1
and Induced e.m.f. = -2xfLI

Applied
voltage

Current

Time —




CHAPTER 10 SINGLE-PHASE SERIES CIRCUITS 227

Hence the induced e.m.f. is represented by the curve in Fig. 10.7, leading the
current by a quarter of a cycle.

Since the resistance of the circuit is assumed negligible, the whole of the
applied voltage is equal to the induced e.m.f., therefore instantaneous value
of applied voltage is

v=e
=2nfLI, cos 2rft
v=2nfLIl, sin(2xft + 7t/2) [10.6]

Comparison of expressions [10.4] and [10.6] shows that the applied volt-
age leads the current by a quarter of a cycle. Also, from expression [10.6], it
follows that the maximum value V, of the applied voltage is 2xfL1, i.e.

|2
V.,=2rfLI, so that [—m =2nfL

m

If 7 and V" are the r.m.s. values, then

VO oy,
I 07071,

= inductive reactance
Inductive reactance Symbol: X, Unit: ohm (€)

The inductive reactance is expressed in ohms and is represented by the
symbol X;. Hence

V 4

where X, =2nfL

The inductive reactance is proportional to the frequency and the current
produced by a given voltage is inversely proportional to the frequency, as
shown in Fig. 10.8.

The phasor diagram for a purely inductive circuit is given in Fig. 10.9,
where E represents the r.m.s. value of the e.m.f. induced in the circuit, and
V, equal to E, represents the r.m.s. value of the applied voltage.

Current
Inductive EAV (=2r/fLI)
reactance
(6] Frequency h I
Fig. 10.8 Variation of reactance and current Fig. 10.9 Phasor diagram

with frequency for a purely inductive circuit for a purely inductive circuit
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m Mechanical

analogy of an
inductive circuit

Fig. 10.10 Mechanical analogy
of a purely inductive circuit

One of the most puzzling things to a student commencing the study of
alternating currents is the behaviour of a current in an inductive circuit.
For instance, why should the current in Fig. 10.6 be at its maximum value
when there is no applied voltage? Why should there be no current when
the applied voltage is at its maximum? Why should it be possible to have a
voltage applied in one direction and a current flowing in the reverse direction,
as is the case during the second and fourth quarter-cycles in Fig. 10.6?

It might therefore be found helpful to consider a simple mechanical
analogy — the simpler the better. In mechanics, the inertia of a body opposes
any change in the speed of that body. The effect of inertia is therefore
analogous to that of inductance in opposing any change in the current.

Suppose we take a heavy metal cylinder C (Fig. 10.10), and roll it back-
wards and forwards on a horizontal surface between two extreme positions
A and B. Let us consider the forces and the speed while C is being rolled
from A to B. At first the speed is zero, but the force applied to the body is at
its maximum, causing C to accelerate towards the right. This applied force
is reduced — as indicated by the length of the arrows in Fig. 10.10 — until it
is zero when C is midway between A and B; C ceases to accelerate and will
therefore have attained its maximum speed from left to right.

Applied force —> —> ° - -—
Reaction <«— -« ) — > — >
Speed ° > > > °

Applied force 5
(applied voltage)

Speed >
(current)
—_—— 1
Pid ‘ \ . 1
- Time
. -
Reaction -

(induced e.m.f.)

Immediately after C has passed the mid-point, the direction of the
applied force is reversed and increased until the body is brought to rest at B
and then begins its return movement.

The reaction of C, on the other hand, is equal and opposite to the applied
force and corresponds to the e.m.f. induced in the inductive circuit.

From an inspection of the arrows in Fig. 10.10 it is seen that the speed in
a given direction is a maximum of a quarter of a complete oscillation after the
applied force has been a maximum in the same direction, but a quarter of an
oscillation before the reaction reaches its maximum in that direction. This is
analogous to the current in a purely inductive circuit lagging the applied
voltage by a quarter of a cycle. Also it is evident that when the speed is
a maximum the applied force is zero, and that when the applied force is a
maximum the speed is zero; and that during the second half of the movement
indicated in Fig. 10.10, the direction of motion is opposite to that of the
applied force. These relationships correspond exactly to those found for a
purely inductive circuit.
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m Resistance and

inductance
in series

Fig. 10.11
Resistance and

inductance in series.

(a) Circuit diagram;
(b) phasor diagram;
(c) instantaneous
phasor diagram;

(d) wave diagram

(b)

Having considered the effects of resistance and inductance separately in a
circuit, it is now necessary to consider their combined effects. This can be
most simply achieved by connecting the resistance and inductance in series,
as shown in Fig. 10.11(a).

(c) (d)

The phasor diagram results from an application of Kirchhoff’s second
law. For convenience, the current is taken as reference since it is common to
all the elements of a series circuit. The circuit voltage may then be derived
from the following relations:

V, =1R, where V, is in phase with I
V, =1X,, where V, leads I by 90°

V=V,+V, (phasor sum) [10.8]

It will be remembered that bold symbols represent phasor quantities.

In the phasor diagram, shown in Fig. 10.11(b), the total voltage is thus
obtained from relation [10.8], which is a complexor summation. The arith-
metical sum of J} and V), is incorrect, giving too large a value for the total
voltage V.

The angle of phase difference between V and I is termed the phase angle
and is represented by ¢. Also

1
V=w;+ Vi)
= (I'R* + X3
= (R + X))

Hence V=1Z volts [10.9]
where Z =(R*+ Xf)%

or Z=(R*+ @) ohms [10.10]
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Fig. 10.12 Voltage and
impedance triangles. (a) Voltage
diagram; (b) impedance diagram

Here Z is termed the impedance of the circuit. Relation [10.9] will be seen
to be a development of the relation " = IR used in d.c. circuit analysis.
However, for any given frequency, the impedance is constant and hence
Ohm’s law also applies to a.c. circuit analysis.

Impedance Symbol: Z Unit: ohm ()

The instantaneous phasor diagram, and the resulting wave diagram, show
that the current lags the voltage by a phase angle greater than 0° but less than
90°. The phase angle between voltage and current is determined by the ratio
of resistance to inductive reactance in the circuit. The greater the value of
this ratio, the less will be the angle ¢.

This statement can be developed by again considering the phasor dia-
gram. Each side of the summation triangle has the same factor I.
Consequently the triangle can be drawn to some other scale using only the
values of resistance, reactance and impedance, as shown in Fig. 10.12. Such
a triangle is termed an impedance triangle.

A“"iw A‘ﬂ'Ii&

(a) (b)

Just as in Fig. 10.11(b), the triangle is again right-angled. This compares
with relation [10.10]. By the geometry of the diagram:

¢=tan LA =tan' X,
R
X
=tan”' == 10.11
¢ R [10.11]

To emphasize that the current lags the voltage, it is usual to give either
the resulting angle as a negative value or else to use the word ‘lag’ after the
angle. This is illustrated in Example 10.1.

The phase angle may also be derived as follows:

R
¢=cos” — =cos = [10.12]

R

hence  ¢=cos' ———
(R + 0I2)?
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Example 10.1

Fig. 10.13 Circuit diagram for
Example 10.1

Example 10.2

Fig. 10.14 Circuit diagram for
Example 10.2

Example 10.3

JA

Z,=50Q

R=40Q

Fig. 10.15 Circuit diagram for
Example 10.3

A resistance of 7.0 Q is connected in series with a pure inductance of
31.8 mH and the circuit is connected to a 100 V, 50 Hz, sinusoidal
supply (Fig. 10.13). Calculate:

(a) the circuit current;
(b) the phase angle.

X, =271fL = 2750 x 31.8 x 107 = 10.0 Q
Z=(R*+ X2 =(7.0°+10.0%2=122 Q

P10 g0
Z 122
X, 100

¢ =tan’ 3 = tan ETY =55.1°lag or —55.1°

A pure inductance of 318 mH is connected in series with a pure
resistance of 75 Q. The circuit is supplied from a 50 Hz sinusoidal
source and the voltage across the 75 Q resistor is found to be 150 V
(Fig. 10.14). Calculate the supply voltage.

V=150V
B0,
R 75

X, = 271fL = 2750 x 318 x 10~ = 100
V,=1X,=2x100=200V
V= (V2 + V22 = (150° + 200%)
Alternatively
Z =(R*+ X2 = (75 + 100%): =125 Q
V=17=2x125=250 V

o=

=250V

A coil, having both resistance and inductance, has a total effective
impedance of 50 Q and the phase angle of the current through it with
respect to the voltage across it is 45° lag. The coil is connected in
series with a 40 Q resistor across a sinusoidal supply (Fig. 10.15). The
circuit current is 3.0 A; by constructing a phasor diagram, estimate
the supply voltage and the circuit phase angle.

Ve=IR=3x40=120V
V, =1Z,=3%50=150 V

The use of subscript notation should be noted in the previous line. It
would have been incorrect to write that V;, = IZ, since Z is used to represent
the total circuit impedance. In more complex problems, numbers can be
used, i.e. Z,, Z,, Z, etc. In this example, such a procedure would be tedious.

The phasor diagram (Fig. 10.16) is constructed by drawing the phasor V,
to some appropriate scale. The direction of this phasor will coincide with
that of the current /. Since the voltage across the coil will lead the current by
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Fig. 10.16 Phasor diagram for
Example 10.3

m ARternating

current in a
capacitive circuit

Fig. 10.17 Circuit with
capacitance only

Fig. 10.18 Voltage and current
waveforms for a purely capacitive
circuit

45°, phasor V,, can also be drawn. Complexor summation of the two voltages
gives an estimate of the total voltage.
From the diagram

=250V
¢=25°lag
We could have calculated the solution as follows:
V2=Vh+ V2 + 2V, cos ¢,
=120% + 150* + 2 - 120 - 150 - 0.707

=62 500
V=250V
cos ¢ = L2+ V,;cos ¢, _120+(1 ;(S)Ox 0.707)
=0.904
¢=25lag

Figure 10.17 shows a capacitor C connected in series with an ammeter A
across the terminals of an a.c. source; and the alternating voltage applied to
C is represented in Fig. 10.18. Suppose this voltage to be positive when it
makes plate D positive relative to plate E.

If the capacitance is C farads, then from expression [5.18], the charging
current 7 is given by

1 = C X rate of change of p.d.

In Fig. 10.18, the p.d. is increasing positively at the maximum rate at instant
zero; consequently the charging current is also at its maximum positive value
at that instant. A quarter of a cycle later, the applied voltage has reached its
maximum value V; and for a very brief interval of time the p.d. is neither
increasing nor decreasing, so that there is no current. During the next quar-
ter of a cycle, the applied voltage is decreasing. Consequently the capacitor
discharges, the discharge current being in the negative direction.

When the voltage is passing through zero, the slope of the voltage curve
is at its maximum, i.e. the p.d. is varying at the maximum rate; consequently
the current is also a maximum at that instant.

ex)

doy Applied Current
4\ V voltage
o 11
v l Time — .
e 1 1
tode o -
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m Current and

voltage in a
capacitive circuit

A%

Fig. 10.19 Phasor diagram for a
purely capacitive circuit

Capacitive
reactance

Current

0 Frequency f
Fig. 10.20 Variation of

reactance and current with
frequency for a purely
capacitive circuit

In this case we start with the voltage wave, whereas with inductance we
started with the current wave. The reason for this is that in the case of induct-
ance, we derive the induced e.m.f. by differentiating the current expression;
whereas with capacitance, we derive the current by differentiating the volt-
age expression.

Suppose that the instantaneous value of the voltage applied to a capacitor
having capacitance C farads is represented by

v=V, sin @t =V, sin 2xfi [10.13]

If the applied voltage increases by dv volts in dz seconds (Fig. 10.18) then,
from equation [5.18], instantaneous value of current is

ok
dt
d .
=C—(V,, sin 27f1)
dr
=2nfCV,, cos 2rtfi
i = 2fCV., sin (ant + %J [10.14]

Comparison of expressions [10.13] and [10.14] shows that the current
leads the applied voltage by a quarter of a cycle, and the current and voltage
can be represented by phasors as in Fig. 10.19.

From expression [10.14] it follows that the maximum value /,, of the cur-

rent is 2t/ CV,,,
v, 1

m

1. 27/C

Hence, if 7 and V are the r.m.s. values
4 1

= = capacitive reactance [10.15]

[ 27/C

The capacitive reactance is expressed in ohms and is represented by the
symbol X . Hence

[=2mfcr =
Xe
=L [10.16]
27fC

The capacitive reactance is inversely proportional to the frequency, and the
current produced by a given voltage is proportional to the frequency, as
shown in Fig. 10.20.

Capacitive reactance Symbol: X Unit: ohm (€2)
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D ENERORE A 30 uF capacitor is connected across a 400 V, 50 Hz supply. Calculate:

Analogies of
a capacitance
in an a.c. circuit

Applied
force
Speed

<—<—Q—>—>{
o —> —> —>

Fig. 10.21 Mechanical analogy
of a capacitive circuit

Resistance
and capacitance
in series

(a) the reactance of the capacitor;
(b) the current.

(a) From expression [10.16]:

1
2%3.14x50x30x10°

(b) From expression [10.15]:

=106.2 Q

reactance X, =

Current = ﬂ =3.77A
106.2

If the piston P in Fig. 5.5 is moved backwards and forwards, the to-and-fro
movement of the water causes the diaphragm to be distended in alternate
directions. This hydraulic analogy, when applied to capacitance in an a.c.
circuit, becomes rather complicated owing to the inertia of the water and
of the piston, and as we do not want to take the effect of inertia into account
at this stage, it is more convenient to consider a very light flexible strip L
(Fig. 10.21), such as a metre rule, having one end rigidly clamped. Let us
apply an alternating force comparatively slowly by hand so as to oscillate L.
between positions A and B.

When L is in position A, the applied force is at its maximum towards the
lefi. As the force is reduced, L. moves towards the 7ight. Immediately L. has
passed the centre position, the applied force has to be increased towards the
right, while the speed in this direction is decreasing. These variations are
indicated by the lengths of the arrows in Fig. 10.21. From the latter it is
seen that the speed towards the right is a maximum a quarter of a cycle
before the applied force is a maximum in the same direction. The speed
is therefore the analogue of the alternating current, and the applied force
is that of the applied voltage. Hence capacitance in an electrical circuit is
analogous to elasticity in mechanics, whereas inductance is analogous to
inertia (section 10.5).

The effect of connecting resistance and capacitance in series is illustrated in
Fig. 10.22. The current is again taken as reference.
The circuit voltage is derived from the following relations:

V; =1IR, where V, is in phase with I
V. =1X,, where V, lags I by 90°
V=V, +V,
V=(+VY):
= (I’R*+ I’X2):
= I(R*+ X2):
V=I1Z

(phasor sum)

Also

Hence
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Fig. 10.22 Resistance

and capacitance in series.

(a) Circuit diagram;

(b) phasor diagram;

(c) instantaneous phasor
diagram;

(d) wave diagram

Fig. 10.23 Voltage and
impedance diagrams.

(a) Voltage diagram;

(b) impedance diagram

(b) v (©) (@)

where  Z = (R*+ X2) [10.17]

1
2
and 7 = (RZ + zlcz )
1)

Again Z is the impedance of the circuit. For any given frequency, the
impedance remains constant and is thus the constant used in Ohm’s law, i.e.
the impedance is the ratio of the voltage across the circuit to the current
flowing through it, other conditions remaining unchanged.

The instantaneous phasor diagram, and the resulting wave diagram, show
that the current leads the applied voltage by a phase angle greater than 0° but
less than 90°. The phase angle between voltage and current is determined by
the ratio of resistance to capacitive reactance in the circuit. The greater the
value of this ratio, the less will be the angle ¢. This can be illustrated by
drawing the impedance triangle for the circuit, as shown in Fig. 10.23.

Ve Xc
\Y

A
(a) (b)

By the geometry of the diagram:

¢ =tan™ Yo _ tan™! X
R
X,
=tan =% 10.18
¢ R [ ]

To emphasize that the current leads the voltage, it is usual either to give
the resulting angle as a positive value or else to use the word ‘lead’ after the
angle. This is illustrated in Example 10.5.
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The phase angle can also be derived as follows:

R
¢ = cos™ Ve _ cos™' —
V VA

q R

¢ =cos” 0
R+ L)
w*C?

[10.19]

1DEINEROBR A capacitor of 8.0 UF takes a current of 1.0 A when the alternating
voltage applied across it is 230 V. Calculate:

(a) the frequency of the applied voltage;

(b) the resistance to be connected in series with the capacitor to
reduce the current in the circuit to 0.5 A at the same frequency;

(c) the phase angle of the resulting circuit.

057
230V o230
C=8uF (a) XCZTZWZZ:;OQ
1
R 27th
1 1
[ = = =86.5 Hz
2tCX, 2w x8x107°x 230
Fig. 10.24 Circuit diagram for (b) When a resistance is connected in series with the capacitor, the cir-
Example 10.5 cuit is now as given in Fig. 10.24.
2=V 400
I 05
= (R*+ X2):
but X-=230Q
hence R =398 Q
R
() ¢=cos™ = cos™ 398 _ +30° or 30° lead

m Alternating ) L ) e
current in an We have already considered resistive, inductive and capacitive circuits separ-
RLC circuit ately. However, we know that a practical inductor possesses inductance and
resistance effectively in series. It follows that our analysis of R and L in series

is equivalent to the analysis of a circuit including a practical inductor.
We can now consider the general case of R, L and C in series. This com-
bines the instances of R and L in series with that of R and C in series.
However, by producing the general case, we can adapt the results to the
other two cases by merely omitting the capacitive or the inductive reactance

from the expressions derived for the general case.

Before we start the general analysis, let us remind ourselves about the draw-
ing of the phasor diagrams. Sometimes it is hard to know where to start, but
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Fig. 10.25 Circuit with R,
and C in series

B
L i (L
I
I
I
¢ o
0 2 >
A I
c

Fig. 10.26 Phasor diagram for
Fig. 10.25

the rule is simple: start with the quantity that is common to the components
of the circuit. We are dealing with a series circuit, therefore the current is the
common quantity so that in Fig. 10.26 the current phasor is the first to be
drawn. Later we will come to parallel circuits in which case the voltage is the
common quantity, hence the voltage phasor is the first to be drawn.

Figure 10.25 shows a circuit having resistance R ohms, inductance L
henrys and capacitance C farads in series, connected across an a.c. supply of
V volts (r.m.s.) at a frequency of f hertz. Let I be the r.m.s. value of the
current in amperes.

From section 10.2, the p.d. across R is R/ volts in phase with the current
and is represented by phasor OA in phase with OI in Fig. 10.26. From
section 10.4, the p.d. across L is 2xtf11, and is represented by phasor OB,
leading the current by 90°; and from section 10.7, the p.d. across C is
1I/(2rfC) and is represented by phasor OC lagging the current by 90°.

Since OB and OC are in direct opposition, their resultant is OD = OB — OC,
OB being assumed greater than OC in Fig. 10.26; and the supply
voltage is the phasor sum of OA and OD, namely OE. From Fig. 10.26,

OE?=0A? + OD* = OA? + (OB — OC)*

V2= (RIY + [ZﬂfL] - L]
27fC

so that

I= 4 _ [10.20]
Z

: 1Y
\/R +(27rfL Zﬂij

where  Z = impedance of circuit in ohms

v : 1Y
Z—T—\/R+(27rfL ZﬂfC] [10.21]

From this expression it is seen that

1
Resultant reactance = 27/L — ——
2rfC

= inductive reactance — capacitive reactance

If ¢ is the phase difference between the current and the supply voltage
AE _OD _OB-0OC 2xfLI-1/(2rnfC)

tan ¢ =
OA OA OA RI
__ inductive reactance — capacitive reactance
resistance
X, - X
tanp = ———C [10.22]

R
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Example 10.6

100V
50 Hz

R=12Q

L=0.1H

Fig. 10.27 Circuit diagram for
Example 10.6

IX, A

~Y

Fig. 10.28 Phasor diagram for
Example 10.6

OA RI  resistance
cosp=——=—=—"-—""—
OE ZI impedance
cos ) = — [10.23]
and
. AE resultant reactance
singp=——= -
OE impedance
X
sin ¢ = — 10.24
) 7 [ ]

If the inductive reactance is greater than the capacitive reactance, tan ¢ is
positive and the current lags the supply voltage by an angle ¢; if less, tan @ is
negative, signifying that the current leads the supply voltage by an angle ¢.
Note the case where X, = X, and I = J'//R. The current is in phase with
the voltage. This condition is termed series resonance and is discussed in
Chapter 14.

A coil having a resistance of 12 Q and an inductance of 0.1 H is
connected across a 100 V, 50 Hz supply. Calculate:

(a) the reactance and the impedance of the coil;

(b) the current;

(c¢) the phase difference between the current and the applied
voltage.

When solving problems of this kind, students should first of all draw
a circuit diagram (Fig. 10.27) and insert all the known quantities. They
should then proceed with the phasor diagram (Fig. 10.28). It is not essential
to draw the phasor diagram to exact scale, but it is helpful to draw it approx-
imately correctly since it is then easy to make a rough check of the calculated
values.

(a) Reactance = X, = 2xfL
=2rx50x0.1=31.4Q
Impedance = Z =\(R> + X ?2)

=V(122+31.4)=33.6 Q

V100
(b) Current=/=—=——=297A
Z 336
X 314
t =—=—=2617
© MmO=r =0

0= 69°
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DENEMOEFA A metal-filament lamp, rated at 750 W, 100 V| is to be connected in

series with a capacitor across a 230 V, 60 Hz supply. Calculate:

(a) the capacitance required;

oy ! (b) the phase angle between the current and the supply voltage.
c T

60 Hz (a) The circuit is given in Fig. 10.29, where R represents the lamp. In the
phasor diagram of Fig. 10.30, the voltage V, across R is in phase with the
current I, while the voltage V across C lags I by 90°. The resultant voltage
V is the phasor sum of V, and V, and from the diagram:

100V
V=ri+ Vs
(230)* = (100)*+ V¢,

Fig. 10.29 Circuit diagram for Ve=210V
Example 10.7 750 W
Rated current of lamp = =75A
00V
v From equation [10.15],
R
i = ? 7.5=2x%3.14x60 x Cx 207
i C=96x10"°F =96 uF
i (b) If ¢ is the phase angle between the current and the supply voltage
i cos @ = V—; (from Fig. 10.30)
Y\ i
Ve v = % =0.435
Fig. 10.30 Phasor diagram for
Example 10.7 o= 64°12

A circuit having a resistance of 12 Q, an inductance of 0.15 H and a
capacitance of 100 uF in series, is connected across a 100 V, 50 Hz
supply. Calculate:

(a) the impedance;

(b) the current;

(c) the voltages across R, L and C;

(d) the phase difference between the current and the supply
voltage.

The circuit diagram is the same as that of Fig. 10.25.
(a) From equation [10.21],

6 2
= (12> +]2x3.14 x 50 x 0.15 — 10
2 x 3.14 x 50 x 100

=V{144 + (47.1 - 31.85)} = 19.4 Q

(b) Current = v = 100 =5.15A
Z 194
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V,=2425 (c) Voltage across R=1,=12x5.15=61.8V
Voltage across L =1, =47.1 x5.15=2425V
\ Ve 100 and Voltage across C=1,=31.85x5.15=164.0V
=78.54 =
These voltages and current are represented by the respective phasors in
Fig. 10.31.
o > (d) Phase difference between current and supply voltage is
r=01.
1.
¢ = cos™ Ve _ cos™ 018 _ 51°50’
V 100
V=164

Or, alternatively, from equation [10.22],

L 47.1-3185
12

Note: the determined values for ¢ are slightly different and this is because we
have inferred too great an accuracy to the angles. Given that the input infor-
mation is only accurate to two decimal places, it follows that the angles can
only be given to about one decimal point of a degree, i.e. the answer might
better be given as 51.8°.

Fig. 10.31 Phasor diagram for

Example 10.8

¢ = tan =tan"'1.271 = 51°48’

Summary of important For a purely resistive circuit

formulae
V=IR [10.2]
For a purely inductive circuit
V=1IX,=2rfLl= oLl [10.7]
v=2mfLIl, sm(2xft + r/2) [10.6]

For a purely capacitive circuit

V=IX,=1/2xfC=1/0C [10.16]
i=2mfCV,, sin(2rtft + 7/2) [10.14]
For R and L in series
V=I1Z [10.9]
1 1
Z =(R*+ @’L})? = (R*+ X2) [10.10]

For R and C in series
i 1
Z 1
Z=(R2+Wj =(R2+Xé)2 [1017]
For R, L and C in series

1
212
Z={R"+ (a)L— Lcj = (R*+ (X, - X8  [10.21]
(0]
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If a circuit is purely resistive, the current is in phase with the voltage. If
it is purely inductive, the current lags the voltage by 90°. If the circuit
is purely capacitive, the current leads the voltage by 90°.

Terms and concepts

If a circuit contains both resistance and inductance, the current lags the
voltage by an angle less than 90° but the angle is greater than 0°.

If a circuit contains both resistance and capacitance, the current leads the
voltage by an angle less than 90° but the angle is greater than 0°.

If a circuit contains resistance, inductance and capacitance, the current
may lead, lag or be in phase with the voltage depending on the relative
values of the inductive and capacitive reactances.

The reactance of an inductor rises with frequency.

The reactance of a capacitor falls with frequency.

Exercises 10

1. A closed-circuit, 500-turn coil, of resistance 100 Q 6. A coil connected to a 230 V, 50 Hz sinusoidal supply

and negligible inductance, is wound on a square frame
of 40 cm side. The frame is pivoted at the mid-points
of two opposite sides and is rotated at 250 r/min in a
uniform magnetic field of 60 mT. The field direction
is at right angles to the axis of rotation. For the instant
that the e.m.f. is maximum: (a) draw a diagram of the
coil, and indicate the direction of rotation, and of
the current flow, the magnetic flux, the e.m.f. and the
force exerted by the magnetic field on the conductors;
(b) calculate the e.m.f., the current and the torque,
and hence verify that the mechanical power supply
balanced the electric power produced.

. An alternating p.d. of 100V (r.m.s.), at 50 Hz, is
maintained across a 20 €2 non-reactive resistor. Plot to
scale the waveforms of p.d. and current over one cycle.
Deduce the curve of power and state its mean value.

. An inductor having a reactance of 10 € and negligible
resistance is connected to a 100 V (r.m.s.) supply.
Draw to scale, for one half-cycle, curves of voltage and
current, and deduce and plot the power curve. What is
the mean power over the half-cycle?

. A coil having an inductance of 0.2 H and negligible
resistance is connected across a 100 V a.c. supply.
Calculate the current when the frequency is: (a) 30 Hz;
and (b) 500 Hz.

. A coil of inductance 0.1 H and negligible resistance is
connected in series with a 25 Q resistor. The circuit
is energized from a 230V, 50 Hz source. Calculate:
(a) the current in the circuit; (b) the p.d. across the coil;
(c) the p.d. across the resistor; (d) the phase angle of
the circuit. Draw to scale a phasor diagram representing
the current and the component voltages.

10.

takes a current of 10 A at a phase angle of 30°.
Calculate the resistance and inductance of, and the
power taken by, the coil. Draw, for one half-cycle,
curves of voltage and current, and deduce and plot the
power curve. Comment on the power curve.

. A 15 Q non-reactive resistor is connected in series

with a coil of inductance 0.08 H and negligible resist-
ance. The combined circuit is connected to a 240 V,
50 Hz supply. Calculate: (a) the reactance of the coil;
(b) the impedance of the circuit; (c) the current in the
circuit; (d) the power factor of the circuit; (e) the
active power absorbed by the circuit.

. The potential difference measured across a coil is 20 V

when a direct current of 2 A is passed through it. With
an alternating current of 2 A at 40 Hz, the p.d. across
the coil is 140 V. If the coil is connected to a 230 V,
50 Hz supply, calculate: (a) the current; (b) the active
power; (c) the power factor.

. A non-inductive load takes a current of 15 A at 125 V.

An inductor is then connected in series in order that
the same current shall be supplied from 240 V, 50 Hz
mains. Ignore the resistance of the inductor and
calculate: (a) the inductance of the inductor; (b) the
impedance of the circuit; (c) the phase difference
between the current and the applied voltage. Assume
the waveform to be sinusoidal.

A series a.c. circuit, ABCD, consists of a resistor AB,
an inductor BC, of resistance R and inductance L, and
a resistor CD. When a current of 6.5 A flows through
the circuit, the voltage drops across various points are:
Vig =65V, Ve =124V, Vi = 149 V. The supply
voltage is 220 V at 50 Hz. Draw a phasor diagram
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Exercises 10 continued

11.

12.

13.

14.

15.

to scale showing all the resistive and reactive volt
drops and, from the diagram, determine: (a) the volt
drop Vjp, and the phase angle between it and the
current; (b) the resistance and inductance of the
inductor.

A coil of 0.5 H inductance and negligible resistance
and a 200 € resistor are connected in series to a 50 Hz
supply. Calculate the circuit impedance.

An inductor in a radio receiver has to have a react-
ance of 11 kQ at a frequency of 1.5 MHz. Calculate
the inductance (in millihenrys).

A coil takes a current of 10.0 A and dissipates 1410 W
when connected to a 230 V, 50 Hz sinusoidal supply.
When another coil is connected in parallel with it,
the total current taken from the supply is 20.0 A at a
power factor of (.866. Determine the current and the
overall power factor when the coils are connected in
series across the same supply.

When a steel-cored reactor and a non-reactive resistor
are connected in series to a 150 V a.c. supply, a current
of 3.75 A flows in the circuit. The potential differences
across the reactor and across the resistor are then
observed to be 120 V and 60 V respectively. If the d.c.
resistance of the reactor is 4.5 Q, determine the core
loss in the reactor and calculate its equivalent series
resistance.

A single-phase network consists of three parallel
branches, the currents in the respective branches
being represented by: i, = 20 sin 314 amperes; 7, =
30 sin(3147 — /4) amperes; and i; = 18 sin(3141 + 7/2)
amperes. (a) Using a scale of 1 cm = 5 A, draw a
phasor diagram and find the total maximum value of
current taken from the supply and the overall phase
angle. (b) Express the total current in a form similar to
that of the branch currents. (c) If the supply voltage is
represented by 200 sin 3147 volts, find the impedance,
resistance and reactance of the network.

A non-inductive resistor is connected in series with a
coil across a 230 V, 50 Hz supply. The currentis 1.8 A
and the potential differences across the resistor and
the coil are 80 V and 170 V respectively. Calculate the
inductance and the resistance of the coil, and the phase
difference between the current and the supply voltage.
Also draw the phasor diagram representing the cur-
rent and the voltages.

16.

17.

18.

19.

20.

21.

An inductive circuit, in parallel with a non-inductive
resistor of 20 Q, is connected across a 50 Hz supply.
The currents through the inductive circuit and the
non-inductive resistor are 4.3 A and 2.7 A respect-
ively, and the current taken from the supply is 5.8 A.
Find: (a) the active power absorbed by the inductive
branch; (b) its inductance; and (c) the power factor of
the combined network. Sketch the phasor diagram.

A coil having a resistance of 15 Q and an inductance
of 0.2 H is connected in series with another coil having
a resistance of 25 Q and an inductance of 0.04 H to
a 230 V, 50 Hz supply. Draw to scale the complete
phasor diagram for the circuit and determine: (a) the
voltage across each coil; (b) the active power dissipated
in each coil; (c) the power factor of the circuit as a whole.
Two identical coils, each of 25 € resistance, are
mounted coaxially a short distance apart. When one
coil is supplied at 100 V, 50 Hz, the current taken is
2.1 A and the e.m.f. induced in the other coil on
open-circuit is 54 V. Calculate the self-inductance of
each coil and the mutual inductance between them.
What current will be taken if a p.d. of 100 V, 50 Hz is
supplied across the two coils in series?

Two similar coils have a coupling coefficient of 0.6.
Each coil has a resistance of § € and a self-inductance
of 2 mH. Calculate the current and the power factor of
the circuit when the coils are connected in series (a)
cumulatively and (b) differentially, across a 10 V, 5 kHz
supply.

A two-wire cable, 8 km long, has a capacitance of
0.3 uF/km. If the cable is connected toa 11 kV, 60 Hz
supply, calculate the value of the charging current.
The resistance and inductance of the conductors may
be neglected.

Draw, to scale, phasors representing the following
voltages, taking ¢, as the reference phasor:

e; = 80 sin @t volts; ¢, = 60 cos wr volts;

e; = 100 sin(@r — 7/ 3) volts.

By phasor addition, find the sum of these three voltages
and express it in the form of £, sin(wr £ @).

When this resultant voltage is applied to a circuit
consisting of a 10 € resistor and a capacitor of 17.3 Q
reactance connected in series find an expression for the
instantaneous value of the current flowing, expressed
in the same form.



Chapter eleven

When you have studied this chapter, you should

have an understanding of adding the currents found in parallel
branches

be capable of analysing simple networks containing impedances in
parallel

recognize that a network impedance is obtained from the supply
voltage and the supply current

be familiar with polar notation

be capable of applying polar notation to the analysis of parallel
networks

have an understanding of the admittance of an a.c. circuit or network

111
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formulae 257

Terms and concepts 257

As sure as night follows day, we can be sure that if we have series-connected impedances

then there will be parallel-connected impedances. We have discovered how to determine

the current in an impedance so, if two are connected in parallel, then we can find the

current in each branch and add the two currents — it is as simple as that!

Well, maybe it is not just that simple but we can make things easier still by introducing

polar notation. This allows us to operate with impedances in much the same manner as we

did with resistors except that we have to allow for the phase differences.
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Basic a.c.
parallel circuits

m Simple parallel

circuits

Fig. 11.1 Resistance and
inductance in parallel. (a) Circuit
diagram; (b) phasor diagram

It is most common to think of circuits and networks being supplied from a
voltage source. A circuit comprises a single load being supplied from the
voltage source. However, there is no reason not to supply a second load from
the same supply, in which case the loads are in parallel.

However, while it is relatively simple to consider parallel circuits supplied
from a d.c. source, we have to allow for the phase difference between the
currents in the parallel branches. It is therefore necessary to develop our
analysis of a.c. parallel circuits.

There are two arrangements of simple parallel circuits which require ana-
lysis; these are resistance in parallel with inductance and resistance in parallel
with capacitance.

When analysing a parallel circuit, it should be remembered that it consists
of two or more series circuits connected in parallel. Therefore each branch of
the circuit can be analysed separately as a series circuit and then the effect
of the separate branches can be combined by applying Kirchhoft’s first law,
i.e. the currents of the branches can be added complexorially: that is, by
phasor diagram.

The circuit for resistance and inductance in parallel is shown in
Fig. 11.1(a). In the resistive branch, the current is given by

vV
Iy= e where I, and V" are in phase

~y
Ve

In the inductive branch, the current is given by

1, = L, where I, lags V by 90°
Xy
The resulting phasor diagram is shown in Fig. 11.1(b). The voltage which
is common to both branches is taken as reference. Since parallel circuits are
more common, this is one reason that it is usual to take the voltage as refer-
ence in circuit analysis. The total supply current / is obtained by adding the
branch currents complexorially, i.e.

I=1;+1I, (phasor sum) [11.1]
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Fig. 11.2 Resistance and
capacitance in parallel.

(a) Circuit diagram;

(b) phasor diagram

From the complexor diagram:

I= (I} + 1)

|
<
N\
-
+
-
~—

—z-—— [11.2]
2

1. 1

R X

It can be seen from the phasor diagram that the phase angle ¢ is a lagging
angle.

¢ =tan™ L tan™! E tan ™! LS [11.3]
I, X, ol
1
Also =cos ' &
¢ 1
Z
¢ = cos™ 2 [11.4]

In the case of resistance and capacitance connected in parallel, as shown
in Fig. 11.2(a), the current in the resistive branch is again given by

V
I = e where I, and V are in phase
In the capacitive branch, the current is given by
V
I, = . where I leads V by 90°

C

The phasor diagram is constructed in the usual manner based on the relation

I=I,+1I. (phasor sum) [11.5]

<Y

(a) (b)
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Example 11.1

Fig. 11.3 Circuit and phasor
diagrams for Example 11.1

From the phasor diagram:

I= (% + %)

1 1)
=V —=+—
R: X3

v 1
——z=— 11.6
I o]

1LY
R X2

It can be seen from the phasor diagram that the phase angle ¢ is a leading
angle. It follows that parallel circuits behave in a similar fashion to series
circuits in that the combination of resistance with inductance produces a
lagging circuit while the combination of resistance with capacitance gives rise
to a leading circuit.

¢=tan™' I—C =tan™' i =tan"' RwC [11.7]
I X¢
1
Al =cos &
) ¢ = cos 7
Z
=cos™' = 11.8
¢ = cos R [11.8]

A circuit consists of a 115 Q resistor in parallel with a 41.5 uF capaci-
tor and is connected to a 230 V, 50 Hz supply (Fig. 11.3). Calculate:

(a) the branch currents and the supply current;
(b) the circuit phase angle;
(c) the circuit impedance.

VA230V I 27 I

115Q —_— 41.5ur

°
<y
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L=C220 504
R 115
c= ! = ! =76.7 Q
2xfC 2750 x 41.5x 107°
IC:L:ﬂziﬂA
Xo 767
1 1
I=(1%+1%)2=(2.0*+3.0)2=3.6A
1, 2.0
¢ =cos™' £ = cos™' == =56.3° lead
I 3.6
Z:K:@=63.9Q
I 36

m Three branches, possessing a resistance of 50 (2, an inductance of

Fig. 11.4 Circuit diagram for
Example 11.2

Ic A

Ie-1, X i

=
<y

Iy

Fig. 11.5 Phasor diagram for
Example 11.2

0.15 H and a capacitance of 100 uF respectively, are connected in
parallel across a 100 V, 50 Hz supply. Calculate:

(a) the current in each branch;
(b) the supply current;
(c) the phase angle between the supply current and the supply

voltage.
I
I
100V L
I I
EIDEAN ¢
I~~ 100 ur

50Q
0.15H

(a) The circuit diagram is given in Fig. 11.4, where I, I, and I,
represent the currents through the resistance, inductance and capacitance
respectively.

1
=9 _50a
50

B 100
2x3.14 x50 x0.15

and I,=2%3.14x50x 100 x 10°x 100 =3.14 A

=212A

1

In the case of parallel branches, the first phasor (Fig. 11.5) to be drawn is
that representing the quantity that is common to those circuits, namely the
voltage. Then I is drawn in phase with V, I, lagging 90° and I, leading 90°.
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(b) The capacitor and inductor branch currents are in antiphase, hence
the resultant of /,and 7, is
I.—1,=3.14-2.12
=1.02 A, leading by 90°

The current 7 taken from the supply is the resultant of 7, and (I, — I,),
and from Fig. 11.5:

=15+~ 1, =2+ (10152 =5.03

1=224A
(¢) From Fig. 11.5:
COS¢=[7R=2'2?=0.893
O =26°45"
Since [ is greater than /,, the supply current leads the supply voltage by

26°45’.

Parallel
impedance The analysis of impedances in parallel is similar to that of section 11.2 in that

the voltage is taken as reference and the branch currents are calculated with
respect to the voltage. However, the summation of the branch currents is
now made more difficult since they do not necessarily remain either in phase
or quadrature with one another. Thus before it is possible to analyse parallel
impedance networks, it is necessary to introduce a new analytical device —
current components.

circuits

Fig. 11.6 Components of a Icos ¢

current. (a) Lagging power
factor; (b) leading power factor

Consider Fig. 11.6 in which the current I is shown to lag (or lead) the
voltage V by a phase angle ¢. This current may be made up by two compon-
ents at right angles to one another:

1. 7 cos ¢, which is in phase with the voltage and is termed the active or
power component.

2. Isin @, which is in quadrature with the voltage and is termed the quadra-
ture or reactive component.

By the geometry of the diagram:
I* = (I cos ¢)* + (I sin @)
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Fig. 11.7 Addition of
current phasors

Example 11.3

Fig. 11.8 Circuit and phasor
diagrams for Example 11.3

<Y

<y

Iy cos ¢y I, cos ¢,

The reactive component will either lag (or lead) the voltage by 90°
depending on whether the current I lags (or leads) the voltage V.
Consider the addition of the currents I, and I, as shown in Fig. 11.7, i.e.

I=1,+1I, (phasor sum)

The value of I can be achieved by drawing a phasor diagram to scale, but
this is not generally practicable. It can, however, be calculated if the currents
are resolved into components, then

I cos ¢=1, cos ¢, + I, cos ¢,
Isin ¢=1,sin ¢, + [, sin ¢,
But I* = (I cos ¢)* + (I sin ¢)

Hence  I*= ([, cos ¢, + I, cos ¢,)* + (I, sin ¢, + I, sin ¢,)* [11.9]

o Iisin ¢, + I, sin ¢,
I, cos ¢, + I, cos ¢,

Also ¢ =tan

¢ =cos™ ficos ¢, -;]2 cos ¢, [11.10]

A parallel network consists of branches A, B and C. If I, =10£-60° A,
I; =54-30° A and I = 10£90° A, all phase angles, being relative to
the supply voltage, determine the total supply current.

With reference to the circuit and phasor diagrams in Fig. 11.8,

o—> Ic
I
v Iy Iy Ic
102-60°A | 52-30°A 10.£90° A

—— >
1AL v

Iy

1

1

| IR

o A ~a¥
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I=1,+1I;+1I. (phasor sum)
I cos ¢=1, cos ¢, + Iy cos ¢+ I cos @
=10 cos £Z—60° + 5 cos £-30° + 10 cos £90°
=933 A
Isin ¢=1, sin ¢, + [ sin @p+ I sin @
=10 sin£—60° + 5 sin £-30° + 10 sin £90°
=-1.16 A
The negative sign indicates that the reactive current component is lagging,
so the overall power factor will also be lagging.
1= ((Icos 9) + (I'sin 9)?)?
1
=(9.33*+1.16°)2=9.4 A
Isi 1.1
¢ =tan™' Lsng _ an”' —— =7.1° lag
Icos ¢ 33
1=94/-71°A
Consider the circuit shown in Fig. 11.9 in which two series circuits are
connected in parallel. To analyse the arrangement, the phasor diagrams for
each branch have been drawn as shown in Figs 11.9(b) and 11.9(c). In each
branch the current has been taken as reference; however, when the branches
are in parallel, it is easier to take the supply voltage as reference, hence
Figs 11.9(b) and 11.9(c) have been separately rotated and then superimposed
on one another to give Fig. 11.9(d). The current phasors may then be added
to give the total current in correct phase relation to the voltage. The analysis
of the diagram is carried out in the manner noted above.
o—>
va 1
I I
R, R,
v L o .
1 : 2 \\
: # ' —_
L C 1 : ~
E Vv, \ 4 20
' v

(a)

Fig. 11.9 Parallel-impedance
network. (a) Circuit diagram;
(b) phasor diagram for branch 1;
(c) phasor diagram for branch 2;
(d) phasor diagram for complete
circuit

Ve
(b) (c) (d)

The phase angle for the network shown in Fig. 11.9(a) is a lagging angle
if [, sin ¢, > I, sin ¢, and is a leading angle if 7, sin ¢, < [, sin @,. It should
be noted, however, that this was only an example of the method of analysis.
Both circuit branches could have been inductive or capacitive. Alternatively,
there could have been more than two branches. The main concern of this study
has been to illustrate the underlying principles of the method of analysis.
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Example 11.4

Fig. 11.10 Circuit and phasor
diagrams for Example 11.4

A coil of resistance 50 2 and inductance 0.318 H is connected in
parallel with a circuit comprising a 75 Q resistor in series with a
159 uF capacitor. The resulting circuit is connected to a 230 V, 50 Hz

a.c. supply (Fig. 11.10). Calculate:

(a) the supply current;

(b) the circuit impedance, resistance and reactance.

o

() X, =271fL=2m150x0318 =100 Q
Z,= (R + X2)2 = (50° +100°)2 =112 Q

= s = 20 =205A
Z, 112
R 50
¢, = cos™ == = cos'—— = cos ' 0.447 = 63.5° lag
A 112
I,=2.054-63.5° A
1 1

=20Q

C

T 2/C 2250 x 159 X 10°°
Z,= (R + X2 = (75 +20°)1 = 77.7 Q
Vo230

L=—=2""=2296A
Z, 717

X 2
¢, =tan™! - tan™' % =tan"0.267 = 15° lead

In this last equation the solution incorporating the use of the tangent is

used because ¢, is relatively small.
I,=2.96£15° A
I=1,+1, (phasor sum)
I cos ¢=1, cos ¢, + I, cos ¢,

=2.05 cos£—63.5° +2.96 cos £15°=3.77 A
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m Polar

impedances

Fig. 11.11 Polar impedances in
parallel

Isin ¢=1,sin ¢, + I, sin ¢,
= 2.05 sinZ—63.5° + 2.96 sin £15° = —1.07 A
1= ((Icos ¢)* + (I'sin 9)2)2 = (3.77 + 1.07%)2

=39A
2
(b) o280 o
I 392
R:ZCOS¢:Z'M:58.7XEZS6Q
3.92
X:Zsinqyzz.]SIH¢:58,7X%:16Q

Since [sin ¢ is negative, the reactance must be inductive. Thus the
circuit is equivalent to a 56 Q resistor in series with a 16 Q inductive
reactance.

In Example 11.4, the impedance was derived from the current and voltage.
However, it may be questioned why could not the parallel impedances have
been handled in a similar manner to parallel resistors? Consider then three
impedances connected in parallel as shown in Fig. 11.11.

129
V20
hig L4, L2095

(e}

In the first branch
V=17

However, if consideration is given to the phase angles of V and I then to
maintain balance, an impedance must also act like a complexor and have a
phase angle, 1.e.

VA0=1,£¢, - Z,Z-¢,
The impedance phase angle is the conjugate of the circuit phase angle. This
compares with the impedance triangles previously shown (apart from the

reversal of the ‘polarity’).
In complexor notation:

I=1,+1,+1I; (phasorsum)
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Fig. 11.12 Polar impedances
in series

In polar notation:
1£9=12L¢ + LLD, + L,
V20 _ VA0 N V-0 N V-0
Z4=9 L=, 2,2-9, Z;Z-;

1 1 1 1
= + +
24-¢ L=, 2,/-¢, Z;Z-¢;

[11.11]

This relation compares with that for parallel resistors, but it has the com-
plication of having to consider the phase angles. Because of this, it is not
considered, at this introductory stage, prudent to use the polar approach to
the analysis of parallel impedances; the method used in Example 11.4 is more
suitable and less prone to error.
It is most important that the impedance phase angles are not ignored.
If we were to use the magnitudes only of the impedances, we would have the
following statement which is completely wrong!
1 1 1 1
— = — 4+ —
zZ 7, Z, 7
Always remember to use the phase angles!
A similar situation occurs when impedances are connected in series.
Consider the case shown in Fig. 11.12.

o >

120 1

ve-¢ Z—=¢,
Zy
T
VyZ—=0,
Z
ViZ—¢5
Z3
T

o

In complexor notation:
V=V, +V,+V; (phasor sum)
In polar notation:
VZA-¢ =V L-¢ + VL0, + Vi L—0,
10 - Z/L-¢=1£0 - Z,L—¢, + L0 - Z,L—¢, + [ L0 - Z; L~

2L-O=2,L~, + Z,/L—P, + Z; L~ [11.12]

However, it has been shown in section 10.11 that in a series circuit

Z cos ¢ =2, cos ¢, + Z, cos ¢, + Z; cos ¢,

hence R=R +R,+ R, [11.13]
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Example 11.5

Fig. 11.13 Circuit diagram
for Example 11.5. Impedances
connected in series

Fig. 11.14 Circuit diagram
for Example 11.5. Impedance
connected in parallel

Similarly
X=X+ X,+ X, [11.14]

As previously, it would have been incorrect to state that
Z=70+7,+ 7

It may therefore be concluded that, while it is practical to deal with
impedances in series using polar notation, it is not practical to deal with
impedances in parallel in this manner. Parallel network calculations are
better approached on the basis of analysing the branch currents.

Two impedances of 20£—-45° Q and 30£30° Q2 are connected in series
across a certain supply and the resulting current is found to be 10 A
(Fig. 11.13). If the supply voltage remains unchanged, calculate the
supply current when the impedances are connected in parallel.

I
v " 7
20£-45°Q
%
2 ZZ
30.30°Q

R, =7, cosZL—¢, =20 cos £—45°=14.1 Q
X, =7, sinZ—¢, =20 sin£—45° =-14.1 Q, i.e. capacitive
R, =7, cos£L—¢, = 30 cos£30° = 26.0 Q
X, =27, sinZ—¢, =30 sin£30° = 15.0 Q, i.e. inductive
Z={(R+R)*+ (X, + X,)'}?
= {(14.1+ 26.0)* + (-14.1 + 15.0)2}%
=40.1Q
V=1Z=10x40.1=401V

We now connect the impedances in parallel as shown in Fig. 11.14 and
calculate the current in each branch.

Y~

S o
=
S
=
<
=~
S
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n=2 29014
Z, 20
6 =45°

I, cos ¢, =20.1 x0.707 =142 A
I sin ¢, =20.1 x0.707=14.2 A
Izzzzﬂ:BAA
Z, 30
¢, =—30°
I, cos ¢, =13.4x%x0.806=11.6 A
I, sin ¢, =13.4 X (-0.50) =—6.7 A
For total current
I cos ¢=1, cos ¢, + I, cos ¢,
=142+11.6
=258A
I'sin ¢=1, sin ¢, + [, sin ¢,
=142-67=75A
= ((Icos 9)* + (I'sin 9)?):
= (25.8+7.5%):
=269 A

Polar

admittances An alternative approach to parallel a.c. circuits using polar notation can be

made through admittance instead of impedance. The admittance is the
inverse of the impedance in the same way that the conductance is the inverse
of the resistance. The admittance Y is measured in siemens (abbreviated
to S).

Thus in any branch of a parallel network

Vor-vy [11.15]
Z

Admittance Symbol: V' Unit: siemens (S)

When the phase angles are included in this relation, it becomes

12o=v20- vrg= 20
7/-¢
1
Y/p=——
7/-¢

The resulting change in sign of the phase angle should be noted when the
inversion takes place. Hence from relation [11.11]:



256

SECTION 1 ELECTRICAL PRINCIPLES

Fig. 11.15 (a) Impedance
triangle and (b) admittance
triangle for capacitive circuit

Example 11.6

YZo= Y, L0+ Y, 20, + Y.L, [11.16]

Hence Y cos¢=Y, cos ¢, +Y,cos ¢,+ Y;cos ¢,
G=G+G,+G;

Here G is the conductance of the circuit as in the d.c. circuit analysis.
This must be the case since the current and voltage are in phase; this cor-
responds to the resistance of a circuit. Also

Ysin =Y, sin ¢+ Y, sin @, + Y; sin ¢
B=B,+B,+ B;

where B is termed the susceptance of the circuit and is the reactive com-
ponent of the admittance.

Susceptance Symbol: B Unit: siemens (S)
Figure 11.15(a) and (b) respectively show the impedance and admittance

triangles.

R

Xc

4

(a) (b)

For the conductance

G=Ycos¢p=Y-

NIES

NIES
N —

G=— [11.17]

For the susceptance

X

X
B=Ysin¢g=Y —= -—
Z Z

1
VA
X

B=—— [11.18]

The negative sign in this expression is due to the change of sign of the phase
angle noted above. Except in a purely resistive circuit, it must be remem-
bered that G # 1/R.

Three impedances 10£-30° 2, 20£60° Q and 40£0° Q are connected
in parallel (Fig. 11.16). Calculate their equivalent impedance.

1 1
Z /-9, 10/-30°

Y, £, = =0.1£30° S
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Fig. 11.16 Circuit diagram for °
Example 11.6
Z 2 73
10£-30°Q 20.£60° Q 40£0°Q
Similarly
Y, £¢,=0.05£-60° S
Y;Z¢;=0.025£0° S
G=G +G,+ G,
=0.1 c0s£30° + 0.05 cos£—60° + 0.025 cos£0°
=0.087+0.025+0.025=0.137 S
B=B,+B,+ B,
=0.1 sin£30° 4 0.05 sinZ—60° + 0.025 sin£0°
=0.05-0.043+0.0=10.007 S
Y= (G* + B?)? = (0.137% + 0.0072)2
=0.137S
¢ =tan™ E =tan”! —0'007 =3°
G 0.137
1 1
7-p=——=—"—=732/-3°Q
YZ¢ 0.1374£3°
Summary of important For R and L in parallel
formulae
I=1I,+1I, (phasorsum) [11.1]
For R and C in parallel
I=1I,+1I. (phasorsum) [11.5]

Terms and concepts

Parallel networks are simply solved by treating each branch as a simple
series circuit and then adding the branch currents.

Alternatively we can manipulate branch impedances provided they are

expressed in polar form.

The admittance is the inverse of the impedance. The in-phase com-
ponent of the admittance is the conductance and the quadrate

component is the susceptance.
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Exercises 11

1.

In order to use three 110 V, 60 W lamps on a 230 V,
50 Hz supply, they are connected in parallel and a
capacitor is connected in series with the group. Find:
(a) the capacitance required to give the correct voltage
across the lamps; (b) the power factor of the network.
If one of the lamps is removed, to what value will the
voltage across the remaining two rise, assuming that
their resistances remain unchanged?

. A 130 Q resistor and a 30 uF capacitor are connected

in parallel across a 200 V, 50 Hz supply. Calculate:
(a) the current in each branch; (b) the resultant
current; (c) the phase difference between the resultant
current and the applied voltage; (d) the active power;
and (e) the power factor. Sketch the phasor diagram.

. A resistor and a capacitor are connected in series

across a 150 V a.c. supply. When the frequency is
40 Hz the current is 5 A, and when the frequency is
50 Hz the current is 6 A. Find the resistance and
capacitance of the resistor and capacitor respectively.
If they are now connected in parallel across the 150 V
supply, find the total current and its power factor
when the frequency is 50 Hz.

. A series circuit consists of a non-inductive resistor of

10 Q, an inductor having a reactance of 50  and a
capacitor having a reactance of 30 . It is connected to
a 230 V a.c. supply. Calculate: (a) the current; (b) the
voltage across each component. Draw to scale a phasor
diagram showing the supply voltage and current and
the voltage across each component.

. A coil having a resistance of 20  and an inductance

of 0.15H is connected in series with a 100 uF
capacitor across a 230V, 50 Hz supply. Calculate:
(a) the active and reactive components of the current;
(b) the voltage across the coil. Sketch the phasor
diagram.

. A p.d. of 100 V at 50 Hz is maintained across a series

circuit having the following characteristics: R = 10 €,
L =100/r mH, C = 500/7 uF. Draw the phasor dia-
gram and calculate: (a) the current; (b) the active and
reactive components of the current.

. A network consists of three branches in parallel.

Branch A is a 10 Q resistor, branch B is a coil of
resistance 4 Q and inductance 0.02 H, and branch
C is an 8 Q resistor in series with a 200 uF capacitor.

10.

11.

12,

The combination is connected to a 100V, 50 Hz
supply. Find the various branch currents and then, by
resolving into in-phase and quadrature components,
determine the total current taken from the supply.
A phasor diagram showing the relative positions of
the various circuit quantities should accompany your
solution. It need not be drawn to scale.

. A coil, having a resistance of 20 £ and an inductance

of 0.0382 H, is connected in parallel with a circuit
consisting of a 150 uF capacitor in series with a 10 Q
resistor. The arrangement is connected to a 230V,
50 Hz supply. Determine the current in each branch
and, sketching a phasor diagram, the total supply
current.

. A 31.8 uF capacitor, a 127.5 mH inductor of resist-

ance 30 Q and a 100 Q resistor are all connected in
parallel to a 200 V, 50 Hz supply. Calculate the cur-
rent in each branch. Draw a phasor diagram to scale to
show these currents. Find the total current and its
phase angle by drawing or otherwise.

A 200V, 50 Hz sinusoidal supply is connected to a
parallel network comprising three branches A, B and
C, as follows: A, a coil of resistance 3 Q and inductive
reactance 4 Q; B, a series circuit of resistance 4 Q and
capacitive reactance 3 Q; C, a capacitor. Given that
the power factor of the combined circuit is unity, find:
(a) the capacitance of the capacitor in microfarads;
(b) the current taken from the supply.

Two circuits, A and B, are connected in parallel to a
115V, 50 Hz supply. The total current taken by the
combination is 10 A at unity power factor. Circuit A
consists of a 10 Q resistor and a 200 uF capacitor
connected in series; circuit B consists of a resistor and
an inductive reactor in series. Determine the following
data for circuit B: (a) the current; (b) the impedance;
(c) the resistance; (d) the reactance.

A parallel network consists of two branches A and B.
Branch A has a resistance of 10  and an inductance
of 0.1 H in series. Branch B has a resistance of 20 Q
and a capacitance of 100 uF in series. The network is
connected to a single-phase supply of 230 V at 50 Hz.
Calculate the magnitude and phase angle of the
current taken from the supply. Verify your answers by
measurement from a phasor diagram drawn to scale.
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AC circuits deliver power to resistive and reactive loads. We find that in the case of
resistive loads the energy is dissipated in the same way as a direct current dissipates
energy in a resistor. However, we find a completely different situation with reactive loads —
here the energy is first delivered to the load and then it is returned to the source and then
it is returned to the load and so on. It is like watching an unending rally in tennis as the
ball of energy flies to and fro.

The power which gives rise to energy dissipation is the active power. The power
describing the rate of energy moving in and out of reactances is reactive power and is an
essential part of the energy transfer system.

We find therefore that we have to mix active and reactive powers and this leads us to
talk about power factors. Most of us eventually meet with power factors when it comes to
paying commercial electricity bills so it is a good idea to know for what we are paying.
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m The impossible

power

Power in a
resistive circuit

Fig. 12.1 Waveform diagrams
for a resistive circuit

When alternating current systems were first introduced, learned scientists
claimed that it was impossible to deliver energy by such a means. Their
argument was that power transfer would take place during the first half of
the cycle — and then it would transfer back during the second half.

Curiously there was some truth in what they claimed, but they had
overlooked the basic relationship p = i*R. The square of the current means
that the power is positive no matter whether the current has a positive or a
negative value. But it is only the resistive element that dissipates energy from
the circuit. Inductors and capacitors do not dissipate energy which supports
the theory of the impossible power.

Let us therefore examine in more detail the energy transfer process which
takes place first in resistive circuits and then in reactive circuits.

In section 9.6 it was explained that when an alternating current flows
through a resistor of R ohms, the average heating effect over a complete cycle
is I’R watts, where 7 is the r.m.s. value of the current in amperes.

If V volts is the r.m.s. value of the applied voltage, then for a non-
reactive circuit having constant resistance R ohms, V"= IR.

The waveform diagrams for resistance are shown in Fig. 12.1. To the
current and voltage waves, there have been added the waves of the product
vi. Since the instantaneous values of vi represent the instantaneous power p,
it follows that these waves are the power waves. Because the power is con-
tinually fluctuating, the power in an a.c. circuit is taken to be the average
value of the wave.

ey RN N

In the case of the pure resistance, the average power can be most easily
obtained from the definition of the r.m.s. current in the circuit, i.e.

P=TIR [12.1]
This relation can also be expressed as

P=VI [12.2]
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Power in a
purely inductive
circuit

Hence the power in a non-reactive circuit is given by the product of the
ammeter and voltmeter readings, exactly as in a d.c. circuit.

The power associated with energy transfer from the electrical system to
another system such as heat, light or mechanical drives is termed active
power, thus the average given by I°R is the active power of the arrangement.

Alternatively, the average power can be derived from a formal analysis of
the power waveform.

o [
— | “ (¥, sinwt- I, sinwt)dt
2r ),

P

2
VI @ J “ (sin® i) dt
2r

0

(1 _
_ Vm]mﬂ - | 1 —cos 2wt dr
2 |, 2

From this relation it can be seen that the wave has a frequency double that
of the component voltage and current waves. This can be seen in Fig. 12.1;
however, it also confirms that the wave is sinusoidal although it has been dis-
placed from the horizontal axis.

ol sin2otl5
P: mim 5 | 5 ¢
27:{2 4w l
e
"M 2w
VI
p= mim 12.3
5 [12.3]
P=VI

Consider a coil wound with such thick wire that the resistance is negligible
in comparison with the inductive reactance X, ohms. If such a coil is con-
nected across a supply voltage V, the current is given by / = '/ X, amperes.
Since the resistance is very small, the heating effect and therefore the active
power are also very small, even though the voltage and the current are large.
Such a curious conclusion — so different from anything we have experienced
in d.c. circuits — requires fuller explanation if its significance is to be properly
understood. Let us therefore consider Fig. 12.2; which shows the applied
voltage and the current for a purely inductive circuit, the current lagging the
voltage by a quarter of a cycle.

The power at any instant is given by the product of the voltage and the
current at that instant; thus at instant L, the applied voltage is LN volts and
the current is LM amperes, so that the power at that instant is LN X LM
watts and is represented to scale by LP.
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Fig. 12.2 Power curve for a
purely inductive circuit
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By repeating this calculation at various instants we can deduce the curve
representing the variation of power over one cycle. It is seen that during
interval OA the applied voltage is positive, but the current is negative, so that
the power is negative; and that during interval AB, both the current and the
voltage are positive, so that the power is positive.

The power curve is found to be symmetrical about the horizontal axis
OD. Consequently the shaded areas marked ‘— are exactly equal to those
marked ‘+’, so that the mean value of the power over the complete cycle OD
is zero.

It is necessary, however, to consider the significance of the positive and
negative areas if we are to understand what is really taking place. So let
us consider an a.c. generator P (Fig. 12.3) connected to a coil Q whose
resistance is negligible, and let us assume that the voltage and current are
represented by the graphs in Fig. 12.2. At instant A, there is no current and
therefore no magnetic field through and around Q . During interval AB, the
growth of the current is accompanied by a growth of flux as shown by the
dotted lines in Fig. 12.3. But the existence of a magnetic field involves some
kind of a strain in the space occupied by the field and the storing up of energy
in that field, as already dealt with in section 8.10. The current, and therefore
the magnetic energy associated with it, reach their maximum values at
instant B; and, since the loss in the coil is assumed negligible, it follows that
at that instant the whole of the energy supplied to the coil during interval
AB, and represented by the shaded area marked ‘4, is stored up in the
magnetic field.

During the interval BC the current and its magnetic field are decreasing;
and the e.m.f. induced by the collapse of the magnetic flux is in the same
direction as the current. But any circuit in which the current and the induced
or generated e.m.f. are in the same direction acts as a source of electrical
energy (see section 8.2). Consequently the coil is now acting as a generator
transforming the energy of its magnetic field into electrical energy, the latter
being sent to generator P to drive it as a motor. The energy thus returned is
represented by the shaded area marked ‘-~ in Fig. 12.2; and since the positive
and negative areas are equal, it follows that during alternate quarter-cycles
electrical energy is being sent from the generator to the coil, and during the
other quarter-cycles the same amount of energy is sent back from the coil to
the generator. Consequently the net energy absorbed by the coil during a
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Power in a
purely capacitive
circuit

Fig. 12.4 Power curve for a
purely capacitive circuit

complete cycle is zero; in other words, the average power over a complete
cycle is zero.

In this case, the current leads the applied voltage by a quarter of a cycle,
as shown in Fig. 12.4; and by multiplying the corresponding instantaneous
values of the voltage and current, we can derive the curve representing the
variation of power. During interval OA, the voltage and current are both
positive so that the power is positive, i.e. power is being supplied from the
generator to the capacitor, and the shaded area enclosed by the power curve
during interval OA represents the value of the electrostatic energy stored in
the capacitor at instant A.

V5P .
Applied voltage

_ Power

Current

During interval AB, the p.d. across the capacitor decreases from its max-
imum value to zero and the whole of the energy stored in the capacitor at
instant A is returned to the generator; consequently the net energy absorbed
during the half-cycle OB is zero. Similarly, the energy absorbed by the
capacitor during interval BC is returned to the generator during interval CD.
Hence the average power over a complete cycle is zero.

That the inductive and capacitive circuits do not dissipate power can be
proved by an analysis of the power wave. Consider the case of the capacitor.

) 2r
—J (W, sin wt- I, cos wr)dt

2

P

o (=
VI, —J ? (sin wt - cos wr)dr
2r

P

ﬂ cos 20t 2wt w
"o

P=0 [12.4]

0} J sm Za)t
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m Power in a

circuit with
resistance and
reactance

Fig. 12.5 Voltage, current and
power curves

Let us consider the general case of the current differing in phase from the
applied voltage; thus in Fig. 12.5(a), the current is shown lagging the voltage
by an angle ¢.

Let instantaneous value of voltage be

o=V, sin t
then instantaneous value of current is
i=1, sin(wr — @)

0

- Applied voltage

Current
/

wt

(@)

wt

(b)

At any instant, the value of the power is given by the product of the voltage
and the current at that instant, i.e. instantaneous value of power = v/ watts.

By multiplying the corresponding instantaneous values of voltage and
current, the curve representing the variation of power in Fig. 12.5(b) can be
derived, i.e. instantaneous power is

vi=V, sin ot I, sin(wr — @)
1V, {cos ¢ — cos(2mr — @)}
=3V, 1, cos — 1V I cosQort— ¢)

From this expression, it is seen that the instantaneous value of the power
consists of two components:

1. 3V,.1, cos ¢, which contains no reference to @t and therefore remains
constant in value.

2. VI, cos(Qwt — ¢), the term 2@ indicating that it varies at twice the
supply frequency; thus in Fig. 12.5(b) it is seen that the power undergoes
two cycles of variation for one cycle of the voltage wave. Furthermore,
since the average value of a cosine curve over a complete cycle is zero, it
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X,/

Fig. 12.6 Phasor diagram for
Example 12.1

follows that this component does not contribute anything towards the
average value of the power taken from the generator.

Hence, average power over one cycle is

Vo In
%Vm[mcosqbzw-ﬁ-cosd)

P="VIcos ¢ [12.5]

where }J and [ are the r.m.s. values of the voltage and current respectively.
In Fig. 12.5(b), the average power is represented by the height above the
horizontal axis of the dotted line MN drawn midway between the positive
and negative peaks of the power curve.

It will be noticed that during interval OA in Fig. 12.5(b), the power is
negative, and the shaded negative area represents energy returned from the
circuit to the generator. The shaded positive area during interval AB repre-
sents energy supplied from the generator to the circuit, and the difference
between the two areas represents the net energy absorbed by the circuit dur-
ing interval OB. The larger the phase difference between the voltage and
current, the smaller is the difference between the positive and negative areas
and the smaller, therefore, is the average power over the complete cycle.

The average power over the complete cycle is the active power, which is
measured in watts.

The product of the voltage and the current in an a.c. circuit is termed the
apparent power.

Apparent power Symbol: .S Unit: voltampere (V A)
S=VI [12.6]
P=7VIcos ¢

and P =S cos ¢ [12.7]

A coil having a resistance of 6 Q2 and an inductance of 0.03 H is con-
nected across a 50 V, 60 Hz supply. Calculate:

(a) the current;

(b) the phase angle between the current and the applied voltage;
(c) the apparent power;

(d) the active power.

(a) The phasor diagram for such a circuit is given in Fig. 12.6.
Reactance of circuit = 27/ =2 x 3.14 X 60 x 0.03
=11.31Q
From equation [10.10]
Impedance = V{6 + (11312 =12.8Q

and Current = i =39A
12.8
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vV Ve
230V 130V R 30Q
Vi,
180 V r

o

Fig. 12.7 Circuit diagram for
Example 12.2

1 Ve

Fig. 12.8 Phasor diagram for
Example 12.2

Power factor

(b)  From equation [10.11]

tan ¢ = % = llél =1.885

¢ =62°3
(¢) Apparent power S=50%391=196 V A
(d)  Active power = apparent power X cos ¢
=195.5%0.469 =92 W
Alternatively:
Active power = I’R=(3.91*x6=92 W

An inductor coil is connected in series with a pure resistor of 30 Q
across a 230 V, 50 Hz supply. The voltage measured across the coil is
180 V and the voltage measured across the resistor is 130 V (Fig. 12.7).
Calculate the power dissipated in the coil.

The complexor diagram is constructed by first drawing the complexor /
(Fig. 12.8). The resistor voltage complexor }; is then drawn in phase with /.
Since neither the coil phase angle nor the circuit phase angle are known, it is
necessary to derive the remainder of the diagram by construction to scale.
Circles of radius V' and V, are drawn radiating from the appropriate ends of
V. The point of intersection of the circles satisfies the relation

V=V,+V, (phasor sum)
By the geometry of the diagram:
V2=Vi+ Vi +2V,V, cos ¢,
230 = 130> + 180% + 2 x 130 x 180 X cos ¢,,

cos ¢,,=0.077 lag

I= Ve _ 130 =433 A
R 30
P.=V,Icos ¢, =180x4.33x0.077 =60 W
Alternatively:
Z, = Vi, = 180 =415Q
4.33

1
r=2;cos ¢,=41.5%x0.077=3.20 Q
P =T"=433%320=60 W

In a.c. work, the product of the r.m.s. values of the applied voltage and cur-
rent is V1. It has already been shown that the active power P = V1 cos ¢ and
the value of cos ¢ has to lie between 0 and 1. It follows that the active power
P can be either equal to or less than the product V7, which is termed the
apparent power and is measured in voltamperes (V A).
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o

Fig. 12.9 Circuit diagram for
Example 12.3

The ratio of the active power P to the apparent power .S is termed the
power factor, i.e.

Active power P in watts

- = power factor
Apparent power S in voltamperes

I
cos p=—=— 12.8
¢ S~ VI [12.8]
or Active power P = apparent power .S X power factor [12.9]

Comparison of expressions [12.5] and [12.8] shows that for sinusoidal
voltage and current:

Power factor = cos ¢
From the general phasor diagram of Fig. 10.26 for a serzes circuit, it follows that

IR IR  resistance
s Pp=—=—=—"7"7+—
V' IZ impedance

R
=— 12.10
cos ¢ 7 [ |

It has become the practice to say that the power factor is lagging when the
current lags the supply voltage, and leading when the current leads the supply volt-
age. 'This means that the supply voltage is regarded as the reference quantity.

An inductor coil is connected to a supply of 230 V at 50 Hz and takes
a current of 5.0 A. The coil dissipates 750 W (Fig. 12.9). Calculate:

(a) the resistance and the inductance of the coil;
(b) the power factor of the coil.

In this example, the symbol 7 will be used to denote the resistance of the
coil instead of R. This is done to draw attention to the fact that the resistance
is not a separate component of the circuit but is an integral part of the induc-
tor coil. This device was also used in Example 12.2.

(a) 7=V B0
15

=L 30
roy

X, = (22— 1)t = (467 — 307)7 = 34.87 Q

= ﬁzﬂzwzo.lllelllmH
2rf 2750 314

P R
(b) Power factor=cos = —=—= 750

S VI 2305

=0.65lag
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Active and
reactive currents

Fig. 12.10 Active and reactive
components of current

Example 12.4

If a current [ lags the applied voltage }” by an angle ¢, as in Fig. 12.10, it
can be resolved into two components, OA in phase with the voltage and OB
lagging by 90°.

If the phasor diagram in Fig. 12.10 refers to a circuit possessing resistance
and inductance in series, OA and OB must not be labelled /; and 7, respect-
ively. Such terms should only be applied to branch currents as would be the
case if R and L were in parallel. This error of applying parallel terms to series
circuits is easily made by beginners — you have been warned!

Since

Power =1V cos ¢ = V"X Ol cos ¢ = " x OA watts

therefore OA is termed the active component of the current, i.e.
Active component of current = / cos ¢ [12.11]

Power due to component OB is
" x OB cos 90° =0

so that OB is termed the reactive component of the current, i.e.
Reactive component of current = / sin ¢ [12.12]

and Reactive power Q in vars = V'] sin ¢

The term ‘var’ is short for voltampere reactive.
Q=VIsin ¢ [12.13]

also P2+ Q%= (VI cos ¢)* + (VI sin ¢)*
= (VD)X (cos* ¢ + sin*¢) = (VT)* = S*

S?=P?+ O [12.14]

A single-phase motor operating off a 400 V, 50 Hz supply is develop-
ing 10 kW with an efficiency of 84 per cent and a power factor (p.f.)
of 0.7 lagging. Calculate:

(a) the input apparent power;
(b) the active and reactive components of the current;
(c) the reactive power (in kilovars).

. output power in watts
(a) Efficiency = PuLp

input power in watts

__output power in watts

IV X p.f.
0.84 = 10 x 1000
IV x0.7
so that IV=17000V A

Input=17.0kV A
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o—>
1
400V I Iy=425A
50 Hz
C T
o

Fig. 12.11 Circuit diagram for
Example 12.5

Fig. 12.12 Phasor diagram for
Fig. 12.11

input volt amperes

(b)  Current taken by motor =
voltage

_ 17000 _ 425 A
400

therefore active component of current is
42.5%x0.7=29.75 A
Since
sin ¢ =V(1 — cos’p) = V{1 — (0.7)}}
=0.714
therefore reactive component of current is
42.5%x0.714=304 A

30.35
1000

=12.1 kvar

(¢) Reactive power = 400 x

Calculate the capacitance required in parallel with the motor of
Example 12.4 to raise the supply power factor to 0.9 lagging.

The circuit and phasor diagrams are given in Figs 12.11 and 12.12 respect-
ively, M being the motor taking a current [, of 42.5 A.

Current [, taken by the capacitor must be such that when combined with
1,;, the resultant current 7 lags the voltage by an angle ¢, where cos ¢ =0.9.
From Fig. 12.12,

Active component of 1, = I, cos @,
=42.5x%x0.7
=29.75A
and active component of [ is
Tcos p=1x0.9
These components are represented by OA in Fig. 12.12.

29.75

1 =33.06 A

Reactive component of 1, = I, sin @,
=30.35 A (from Example 12.4)
and reactive component of / is
I'sin ¢=33.06V{1 — (0.9)*}
=33.06 % 0.436
=144A
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The practical
importance of
power factor

From Fig. 12.12 it will be seen that

1, = reactive component of /;; — reactive component of /

=30.35—14.4
=15.95 A
But I,=27fCV
15.95 =2 x 3.14 x 50 x C X 400
and C=127x 10°F = 127 uF

From Example 12.5 it will be seen that the effect of connecting a 127 uF
capacitor in parallel with the motor is to reduce the current taken from the
supply from 42.5 to 33.1 A, without altering either the current or the power
taken by the motor. This enables an economy to be effected in the size of the
generating plant and in the cross-sectional area of conductor in the supply
cable.

An a.c. generator is supplying a load of 300 kW at a power factor of
0.6 lagging. If the power factor is raised to unity, how much more
power (in kilowatts) can the generator supply for the same kilovolt-
ampere loading?

Since the power in kW is number of kilovoltamperes X power factor,
therefore number of kilovoltamperes is

300 =500kV A
0.6

When the power factor is raised to unity:

Number of kilowatts = number of kilovoltamperes = 500 kW
Hence increased power supplied by generator is

500 — 300 = 200 kW

If an a.c. generator is rated to give, say, 2000 A at a voltage of 400 V| it means
that these are the highest current and voltage values the machine can give
without the temperature exceeding a safe value. Consequently the rating of
the generator is given as 400 X 2000/1000 = 800 kV A. The phase difference
between the voltage and the current depends upon the nature of the load
and not upon the generator. Thus if the power factor of the load is unity, the
800 kV A are also 800 kW, and the engine driving the generator has to be
capable of developing this power together with the losses in the generator.
But if the power factor of the load is, say, 0.5, the power is only 400 kW, so
that the engine is developing only about one-half of the power of which it is
capable, though the generator is supplying its rated output of 800 kV A.

Similarly, the conductors connecting the generator to the load have to be
capable of carrying 2000 A without excessive temperature rise. Consequently
they can transmit 800 kW if the power factor is unity, but only 400 kW at 0.5
power factor for the same rise of temperature.
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It is therefore evident that the higher the power factor of the load, the
greater is the active power that can be generated by a given generator and
transmitted by a given conductor.

The matter may be put another way by saying that, for a given power, the
lower the power factor, the larger must be the size of the source to generate
that power and the greater must be the cross-sectional area of the conductor
to transmit it; in other words, the greater is the cost of generation and trans-
mission of the electrical energy. This is the reason why supply authorities do
all they can to improve the power factor of their loads, either by the installa-
tion of capacitors or special machines or by the use of tariffs which encour-
age consumers to do so.

Electronics engineers generally have little interest in power factor except
when paying for their power supplies. Electronic circuits for the most part
deal with such small levels of power that the additional heating effects due to
the current not being in phase with the voltage are negligible.

Since the product of the voltage and current in an a.c. circuit must be
multiplied by the power factor to give the active power in watts, the most
convenient method of measuring the power is to use a wattmeter.

For a general circuit

Active power P = V1 cos ¢ (watts) [12.5]
Reactive power QO = VI sin ¢  (vars) [12.13]

Apparent power S = V1 (voltamperes)
Power factor (p.f.) cos ¢ = P/S [12.8]
SP=P+ Q* [12.14]

The active power, sometimes also referred to as the real power, is the
rate of energy conversion or dissipation taken as an average over one or
more complete cycles.

The reactive power is the peak rate of energy storage in the reactive
elements of a circuit. The average rate of energy storage is zero, the
energy continually flowing into and back out from the reactive compon-
ents. The reactive power is sometimes referred to as the imaginary
power — a curious way of saying that it is not real.

The apparent power is the product of the r.m.s. voltage and current and
is related to the active power by the power factor. The apparent
power is a useful means of rating certain equipment, bearing in mind
that conductor heat losses occur whether or not the current is in phase
with the voltage.
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Exercises 12

1.

A single-phase motor takes 8.3 A at a power factor
of 0.866 lagging when connected to a 230 V, 50 Hz
supply. Two similar capacitors are connected in
parallel with each other to form a capacitance bank.
This capacitance bank is now connected in parallel
with the motor to raise the power factor to unity.
Determine the capacitance of each capacitor.

. (a) A single-phase load of 5 kW operates at a power

factor of 0.6 lagging. It is proposed to improve this
power factor to 0.95 lagging by connecting a capacitor
across the load. Calculate the kV A rating of the
capacitor.

(b) Give reasons why it is to consumers’ economic
advantage to improve their power factor with respect
to the supply, and explain the fact that the improve-
ment is rarely made to unity in practice.

. A 25kV A single-phase motor has a power factor of

0.8 lag. A 10 kV A capacitor is connected for power-
factor correction. Calculate the input apparent power
in kV A taken from the mains and its power factor
when the motor is (a) on half load; (b) on full load.
Sketch a phasor diagram for each case.

. A single-phase motor takes 50 A at a power factor of

0.6 lagging from a 230 V, 50 Hz supply. What value
of capacitance must a shunting capacitor have to raise
the overall power factor to 0.9 lagging? How does the

installation of the capacitor affect the line and motor
currents?

. A 230V, single-phase supply feeds the following

loads: (a) incandescent lamps taking a current of § A
at unity power factor; (b) fluorescent lamps taking a
current of 5 A at 0.8 leading power factor; (c) a motor
taking a current of 7 A at 0.75 lagging power factor.
Sketch the phasor diagram and determine the total
current, active power and reactive power taken from
the supply and the overall power factor.

. The load taken from an a.c. supply consists of: (a) a

heating load of 15 kW; (b) a motor load of 40 kV A
at 0.6 power factor lagging; (c) a load of 20 kW at
0.8 power factor lagging. Calculate the total load from
the supply (in kW and kV A) and its power factor.
What would be the kvar rating of a capacitor to bring
the power factor to unity and how would the capacitor
be connected?

. A cable is required to supply a welding set taking a

current of 225 A at 110 V alternating current, the
average power factor being 0.5 lagging. An available
cable has a rating of 175 A and it is decided to use this
cable by installing a capacitor across the terminals of the
welding set. Find: (a) the required capacitor current
and reactive power to limit the cable current to 175 A;
(b) the overall power factor with the capacitor in circuit.
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In the preceding chapters on a.c. circuit theory, problems have been solved exclusively by
the use of phasors. As circuit problems become more involved, the techniques of complex
algebra are used to complement those of phasors to simplify the solution process.

Complex algebra is based upon the fact that phasors, having a magnitude and phase
angle, can be resolved into two components at right angles to each other. Modern
calculators can rapidly convert between these rectangular or complex quantities and polar
(phasor) quantities and this facility should be mastered.

The rectangular notation is particularly useful for the addition and subtraction of
complex quantities like impedances, currents, voltages and power. The phasor notation, in
turn, simplifies the multiplication and division of these complex quantities.
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m The j operator
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Fig. 13.2 Resolution of phasors

Fig. 13.3 Significance of the j

operator

In Chapters 10—12, problems on a.c. circuits were solved with the aid of phasor
diagrams. So long as the circuits are fairly simple, this method is satisfactory;
but with a more involved circuit, such as that of Fig. 13.17, the calculation
can be simplified by using complex algebra. This system enables equations
representing alternating voltages and currents and their phase relationships
to be expressed in simple algebraic form. It is based upon the idea that a
phasor can be resolved into two components at right angles to each other.
For instance, in Fig. 13.1(a), phasor OA can be resolved into components
OB along the x-axis and OC along the y-axis, where OB = OA cos 6 and
OC =O0A sin 6. It would obviously be incorrect to state that OA = OB + OC,
since OA is actually V(OB? + OC?); but by introducing a symbol j to denote
that OC is the component along the y-axis, we can represent the phasor
thus:

OA = OB +jOC = OA(cos 0+ j sin 6)

It will be recalled that a symbol in bold type represents a phasor or complex
quantity, whereas a symbol in normal type represents a magnitude.
The phasor OA may alternatively be expressed thus:

OA=0AZ0

If OA is occupying the position shown in Fig. 13.1(b), the vertical com-
ponent is negative, so that

OA=0B-jOC=0AZ-0

Figure 13.2 represents four phasors occupying different quadrants.
These phasors can be represented thus:

A =a, +jb=A,£6, [13.1]
where
Ay =V(@}+b}) and tan 6, =b/a,
Similarly
A, =—a,+ijb,=A,20,
Ay =—a;— jby = A; L6,
and Ay=a,—jby= A, L6,

The symbol j, when applied to a phasor, alters its direction by 90° in
an anticlockwise direction, without altering its length, and is consequently
referred to as an operator. For example, if we start with a phasor A in phase
with the x-axis, as in Fig. 13.3, then jA represents a phasor of the same
length upwards along the y-axis. If we apply the operator j to j.4, we turn
the phasor anticlockwise through another 90°, thus giving jj4 or j’4 in
Fig. 13.3. The symbol j* signifies that we have applied the operator j twice
in succession, thereby rotating the phasor through 180°. This reversal of
the phasor is equivalent to multiplying by —1, i.e. j24 = —A, so that j* can be
regarded as being numerically equal to —1 and j = \ (-1).

When mathematicians were first confronted by an expression such as
A =3 +j4, they thought of j4 as being an imaginary number rather than a
real number; and it was Argand, in 1806, who first suggested that an ex-
pression of this form could be represented graphically by plotting the 3 units of
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real number in the above expression along the x-axis and the 4 units of
imaginary or  number along the y-axis, as in Fig. 13.4. This type of number,
combining real and imaginary numbers, is termed a complex number.

The term imaginary, though still applied to numbers containing j, such as
j4 in the above expression, has long since lost its meaning of unreality, and
the terms real and imaginary have become established as technical terms, like
positive and negative. For instance, if a current represented by 7 = 3 + j4
amperes were passed through a resistor of, say, 10 Q, the power due to the
‘imaginary’ component of the current would be 4’ x 10 =160 W, in exactly the
same way as that due to the ‘real’ component would be 3* x 10 =90 W. From
Fig. 13.4 it is seen that the actual current would be 5 A. When this current
flows through a 10 Q resistor, the power is 52 X 10 = 250 W, namely the sum
of the powers due to the real and imaginary components of the current.

Since the real component of a complex number is drawn along the
reference axis, namely the x-axis, and the imaginary component is drawn at
right angles to that axis, these components are sometimes referred to as the
in-phase and quadrature components respectively.

We can now summarize the various ways of representing a complex
number algebraically:

A=a+jb (rectangular or Cartesian notation)
= A(cos O+ jsin 0) (trigonometric notation)

=AZ0 (polar notation)

Suppose A, and A, in Fig. 13.5 to be two phasors to be added together. From
this phasor diagram, it is evident that

A =a,+jby and A,=a,+jb,

It was shown in section 9.9 that the resultant of A, and A, is given by A,
the diagonal of the parallelogram drawn on A, and A,. If 2 and 4 are the real
and imaginary components respectively of A, then A = a + jb.

But it is evident from Fig. 13.5 that

a=a,+a, and b=b+b,
A=a,+a,+ijlby+b,)
= (a, +jb) + (a, + jb,)
=A+A,

Figure 13.6 shows the construction for subtracting phasor A, from phasor
A,. If B is the phasor difference of these quantities and if 4, is assumed less
than 4,, then the real component of B is negative.

B=-a+jb
=a,— a,+)(by — by)
= (a) +jby) — (ay +jb,)
=A-A
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Voltage, current
and impedance

X,

Fig. 13.7 Phasor diagram for R
and L in series

IX¢ V=IZ

Fig. 13.8 Phasor diagram for R
and C in series

Let us first consider a simple circuit possessing resistance R in series with an
inductive reactance X;. The phasor diagram is given in Fig. 13.7, where the
current phasor is taken as the reference quantity and is therefore drawn along
the x-axis, i.e.

I=7+j0=1£0
From Fig. 13.7 it is evident that
V=IR+jIX, =I(R+jX))=1Z=1Z2¢

where Z=R+iX,=Z/¢ [13.2]

X
and tan o= —=
¢ R

In the expression V=17, V and I differ from Z in that they are associated
with time-varying quantities, whereas Z is a complex number independent
of time and is therefore not a phasor in the sense that V and I are phasors.
It has, however, become the practice to refer to all complex numbers used
in a.c. circuit calculations as phasors.

Figure 13.8 gives the phasor diagram for a circuit having a resistance R in
series with a capacitive reactance X.. From this diagram:

V=IR-ijIX,=I(R-jX) =1Z=12/—¢

where Z=R—-jX,=7Z/-¢ [13.3]

Xe
and tan g =——
¢ R

Hence for the general case of a circuit having R, X, and X in series,
X, - Xe

Z=R+j(X,- X, and n

tan ¢ =

Express in rectangular and polar notations, the impedance of each
of the following circuits at a frequency of 50 Hz:

(a) a resistance of 20 Q2 in series with an inductance of 0.1 H;
(b) a resistance of 50 Q in series with a capacitance of 40 uF;
(c) circuits (a) and (b) in series.

If the terminal voltage is 230 V at 50 Hz, calculate the value of the
current in each case and the phase of each current relative to the
applied voltage.

(a) For 50 Hz

=27 x 50 = 314 rad/s
Z=20+j314x0.1=20+j31.4Q
Z=7{(20) + (31.4} =372 Q

and I=&=6.18A
37.2

Hence
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If ¢ is the phase difference between the applied voltage and the current
tan ¢ = % =1.57
¢ =57°30", current lagging
The impedance can also be expressed:
7 =37.2257°30" Q

This form is more convenient than that involving the j term when it is
required to find the product or the quotient of two complex numbers; thus,

AZax BLB=ABZ(a+ )
and AZa/BLB=(A/B)4(a— B)
If the applied voltage is taken as the reference quantity, then
V =230£0° volts

o 230.0°
37.2/457°30

6
b Z=50-j—2 _ _50-7796Q
314 x 40

Z={(50)* + (79.6)*} =94 Q

and 1= @ =2447A
94

=6.184-57°30" A

tan ¢ = _D6 =-1.592
50
¢ =57°52', current leading
The impedance can also be expressed thus:
7 =94/-57°52" Q
o 230£0°
94 £/-57°62
(¢) Z=20+j31.44+50-j79.6=70—-j48.2 Q
Z ={(70) + (48.2)’} =85 Q

and I= @ =2.706 A
85

=2.45£57°52" A

tan ¢ = _182 =—-0.689
70
¢ = 34°34’, current leading
The impedance can also be expressed as
7 =85/-34°34 Q

sothat T=—292% 5 0/34034 A
8573434
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